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We present pseudopotential coefficients for the first two rows of the Periodic Table. The pseudopotential is
of an analytic form that gives optimal efficiency in numerical calculations using plane waves as a basis set. At
most, seven coefficients are necessary to specify its analytic form. It is separable and has optimal decay
properties in both real and Fourier space. Because of this property, the application of the nonlocal part of the
pseudopotential to a wave function can be done efficiently on a grid in real space. Real space integration is
much faster for large systems than ordinary multiplication in Fourier space, since it shows only quadratic
scaling with respect to the size of the system. We systematically verify the high accuracy of these pseudopo-
tentials by extensive atomic and molecular test calculations.@S0163-1829~96!04927-2#

I. INTRODUCTION

Pseudopotentials are an essential ingredient for efficient
electronic structure calculations. First, by eliminating the
core electrons, the number of orbitals that has to be calcu-
lated is reduced. Second, the pseudo-wave-functions are
much smoother in the core region than the all-electron wave
functions and the number of basis functions can therefore be
reduced. Especially if plane waves are used as a basis set this
reduction of the size of the basis set is essential. The intro-
duction of the norm-conserving property1 made pseudopo-
tentials an easy to handle and popular tool for electronic
structure calculations. Many attempts have since then been
made to construct norm-conserving pseudopotentials, which
are numerically more efficient than the original ones. The
introduction of the separable form2 of the norm-conserving
pseudopotentials was a major advance. In spite of all these
improvements there is still cubic scaling with respect to the
size of the system. For large systems, this part arising from
the nonlocal pseudopotential takes most of the computer
time. It has been recognized for a long time in different
contexts3 that the cubic scaling of the nonlocal pseudopoten-
tial part can be circumvented by doing the integration on a
grid in real space and proposals have been made to construct
pseudopotentials with good properties for real space integra-
tion by modifying existing pseudopotentials of the
Kleinman-Bylander type.4 The Kleinman-Bylander form was
initially not intended for real space use and therefore does
not satisfy any optimality condition for real space integra-
tion. In contrast to previous work we therefore start out with
an analytical form, which has all of the optimality properties
with respect to real space integration built in. A small num-
ber of parameters is then adjusted in such a way as to reflect
the properties of different atoms.5 In contrast to most imple-
mentations of separable Kleinman-Bylander forms, it is thus
not necessary to store the projectors in numerical form on

dense radial grids requiring very large files. Instead the
whole information on the first two rows of the Periodic Table
can be condensed in a small table on less than a page. This
method thus puts real space integration of the nonlocal
pseudopotential terms on a systematic basis. It is at the same
time extremely easy to implement in a plane wave program,
because all the matrix elements can be calculated analyti-
cally. The chosen analytical form gives nevertheless enough
freedom to impose all the well established pseudopotential
conditions and the pseudopotential is therefore highly accu-
rate.

II. FORM OF THE PSEUDOPOTENTIAL

The local partVloc(r ) of this pseudopotential is given by
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where erf denotes the error function.Zion is the ionic charge
~i.e., charge of the nucleus minus charge of the core elec-
trons!, andr loc gives the range of the Gaussian ionic charge
distribution leading to the erf potential.

The nonlocal part of the HamiltonianH(rW,r 8W ) is a sum of
separable terms
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whereYl ,m denotes a spherical Harmonic. The radial projec-
torspi

l(r ) are Gaussians, wherel takes on the values 0, 1 or
alternativelys, p.
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They are normalized such that
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whereG denotes theg function. The nonlocal potential tends
rapidly to zero outside the core region.

The pseudopotential can easily be transformed in Fourier
space. Calculating the matrix elements for plane waves nor-
malized within a volumeV, (1/AV)eiK

W rW we obtain for the
local part
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For the nonlocal part, we obtain
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The projectorspi
l(K) can be calculated analytically and

the result involves degenerate hypergeometric functions. For
the relevant cases, the result is
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We see that the projectors have the same form in real and
Fourier space, a Gaussian multiplied by a polynomial. As is
well known, the minimum uncertainty wave packet is a
Gaussian. This pseudopotential has therefore optimal decay
properties both in real and Fourier space. Both properties are
of utmost importance for the construction of a numerically

efficient pseudopotential. If the multiplication of the wave
function with the nonlocal pseudopotential arising from an
atom is done on a grid in real space, we want the nonlocal
potential to be localized in a small region around the atom.
We can then restrict the real space integration to this small
region around the atom. In addition, we do not want to use a
very dense integration grid in this region, i.e., we want the
nonlocal pseudopotential to be reasonably smooth. The first
requirement is related to the decay properties of the pseudo-
potential in real space, the second to its decay properties in
Fourier space. The optimal compromise between both re-
quirements is a dual space Gaussian pseudopotential. To
confirm these theoretical predictions, we compared a real
space implementation of this pseudopotential with a real
space implementation of the Stumpf, Gonze, and Schettler
~SGS! pseudopotential19 in the case of silicon. We first found
that an energy cutoff of 12 Ry, which gives a well converged
wave function, does not yet give well converged real space
projectors for the SGS pseudopotential, whereas it gives very
well converged real space projectors for this pseudopotential.
Secondly, a much larger real space sphere containing 2–3
times more grid points is needed for the SGS pseudopotential
than for this pseudopotential. This thus exemplifies that the
decay properties of standard pseudopotentials in both Fourier
and real space are not optimal for real space integration.

Even though this pseudopotential was primarily devel-
oped for use in combination with plane waves as basis set, it
can also easily be implemented with Gaussians as basis func-
tions. All the matrix elements can be calculated analytically
and with O~N! scaling.

III. NUMERICAL METHOD USED FOR FINDING
THE PSEUDOPOTENTIAL PARAMETERS

The pseudopotential parameters were found by a least
square fitting procedure. The penalty function involved the
differences of the eigenvalues and charges within an atomic
sphere of the all-electron atom and pseudoatom. These two
conditions are equivalent to the condition for a norm-
conserving pseudopotential, if they are applied to the occu-
pied states. In addition, we also included these differences
for the first two or three unoccupied states within each occu-
pied angular momentum and for the lowest state of the first
two unoccupied angular momentums. In order to have well
defined excited states the atom was put in an additional para-
bolic confining potential. The inclusion of these excited
states guarantees that the energy versus logarithmic deriva-
tive curve of the pseudoatom reproduces the corresponding
all-electron curve over a wide energy range of typically half
a Hartree. The sets of pseudopotential parameters, which we
give in Tables I and II, typically reproduce the eigenvalues
and charges of the occupied states to within 1026 a.u. and of
the unoccupied ones to within 1023 a.u. It turns out that this
fitting procedure also ensures that additional requirements
that are generally considered6,7 to lead to pseudopotentials of
a very high quality, such as extended norm conservation and
hardness, are automatically satisfied, as will be discussed
later.

IV. DISCUSSION OF THE PSEUDOPOTENTIAL
PARAMETERS

We found that exactly one projector is necessary per or-
thogonalization constraint. For first row atoms, there is there-
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fore only one projector for thes electrons, for second row
atoms, there are two for thes channel and one for thep
channel. For the alkaline and earth alkaline atoms~Li, Be,
Na, Mg!, we included the outermost shell of core electrons as
valence electrons, since these core levels are very shallow in
energy and extended in space. Since the set of PSP param-
eters in Table III are quasiminimal, they exhibit trends across
the Periodic Table in the same way as other physically mean-
ingful quantities do~Fig. 1!.

The parametersr loc , r s , andr p are not comparable with
the parameterr c from other pseudopotentials. For many
pseudopotentials, the wave function of the pseudoatom and
all-electron atom agree outsider c . In our case, they ap-
proach each other exponentially without ever strictly coin-
ciding. The rate at which they approach is of course related
to these parameters. In Figs. 2 and 3 the wave functions for
C and Si are shown.

There are two factors that determine the convergence of

TABLE I. LDA pseudopotential parameters.

H 1 1
0.2000000 -4.0663326 0.6778322
Li 3 3
0.4000000 -14.0093922 9.5099073 -1.7532723 0.0834586
Be 4 4
0.3250000 -23.9909934 17.1717632 -3.3189599 0.1650828
B 5 3
0.4324996 -5.6004798 0.8062843
0.3738823 6.2352212
C 6 4
0.3464730 -8.5753285 1.2341279
0.3045228 9.5341929
N 7 5
0.2889046 -12.2046419 1.7558249
0.2569124 13.5228129
O 8 6
0.2477535 -16.4822284 2.3701353
0.2222028 18.1996387
F 9 7
0.2168956 -21.4068490 3.0763646
0.1957693 23.5641867
Na 11 9
0.2463178 -22.5984025 3.2558639
0.1688905 30.5987103
Mg 12 10
0.2300716 -27.2076704 3.9727355
0.1544802 36.6930557
Al 13 3
0.4500000 -6.8340578
0.4654363 2.8140777 1.9395165
0.5462433 1.9160118
Si 14 4
0.4400000 -6.9136286
0.4243338 3.2081318 2.5888808
0.4853587 2.6562230
P 15 5
0.4300000 -6.6409658
0.3907376 3.6582627 3.1506638
0.4408459 3.2859445
S 16 6
0.4200000 -6.5960716
0.3626143 4.2228399 3.6696625
0.4053110 3.8853458
Cl 17 7
0.4100000 -6.8903645
0.3389943 4.9069762 4.1601818
0.3762100 4.4850412

TABLE II. BLYP pseudopotential parameters.

H 1 1
0.2000000 -4.1056068 0.6927866
Li 3 3
0.4000000 -14.1025524 9.6502666 -1.7906317 0.0857313
Be 4 4
0.3250000 -24.0585866 17.2528607 -3.3323927 0.1653050
B 5 3
0.4240868 -6.0874360 0.9809158
0.3711409 6.3273454
C 6 4
0.3376330 -9.1284708 1.4251261
0.3025277 9.6507303
N 7 5
0.2819591 -12.7547870 1.9485936
0.2554443 13.6593500
O 8 6
0.2424499 -17.0170608 2.5613312
0.2210835 18.3555618
F 9 7
0.2128041 -21.9265797 3.2654621
0.1948884 23.7399249
Na 11 9
0.2466726 -22.4558069 3.2678153
0.1687218 30.5372232
Mg 12 10
0.2375893 -26.4510785 3.9383420
0.1552995 36.0363418
Al 13 3
0.4500000 -5.5482217
0.5058376 3.0200831 1.0641845
0.5775716 1.5352783
Si 14 4
0.4400000 -5.9796611
0.4449267 3.4401982 1.8812944
0.5036368 2.2882053
P 15 5
0.4300000 -5.8728328
0.4035454 3.8761979 2.5413108
0.4527508 2.9405005
S 16 6
0.4200000 -6.0083024
0.3704011 4.3736224 3.1957311
0.4130790 3.5910959
Cl 17 7
0.4100000 -6.3986998
0.3438408 4.9895061 3.7943315
0.3813668 4.2346666
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all the relevant quantities, with respect to the plane wave
energy cutoff. The first factor is the location of the peak of
the pseudo-wave-function. In order to just get qualitatively
reasonable result, the minimal wavelength representable by
the plane wave basis set has to be equal to roughly 4 times
the radius of this maximum. Once this criterium is satisfied,
systematic convergence starts. If the wave function is ana-
lytic, the convergence will be exponential. Because in this
pseudopotential both the local and nonlocal potentials are
analytic, the wave function is analytic as well and one has
therefore optimal asymptotic convergence. The only thing
that would allow us to make the pseudopotential softer
would therefore be to shift the maximum of the pseudo-
wave-functions outward. This leads, however, to a very fast
deterioration of the physical properties of the pseudopoten-
tial. In the construction of these pseudopotentials, we did
therefore not trade accuracy for extreme softness. We also
found that by taking a harder and accurate pseudopotential
with a relatively low energy cutoff, one obtains results that
are of comparable quality to the ones obtained with a softer
and less accurate pseudopotential at the same energy cutoff.
In the second case, it is just much more difficult to realize
that the results are inaccurate. In Fig. 4, we show some ex-
amples of the convergence of the energy and bond length,
with respect to the plane wave energy cutoff. The fact that
the convergence curve is a nearly perfect straight line on the
logarithmic scale shows that the asymptotic convergence sets
in very early.

As can be seen from Tables I and II, the length scales of
the pseudopotential are typically a third to a fourth of the
covalent radius of the atom. In a real space implementation,

the integration volume of the projectors can, therefore, typi-
cally be restricted to within a sphere, the radius of which is
slightly larger than the covalent radius. This means that the
integration spheres do not appreciably overlap, and the real
space method is therefore already faster for a system of very
small size.

V. ACCURACY

We performed many atomic and molecular calculations to
test the accuracy of this pseudopotential. We found that the
predictive power of widely used pseudopotential tests, such
as plots of the energy vs the logarithmic derivative curve and
transferability tests of excited and ionized atoms is rather
limited with respect to the target molecular calculations. We
will, therefore, just mention that the pseudopotentials of
Tables I and II satisfy these tests very well and give some
examples for C and Si. In Table III we give the transferabil-
ity errors for several excited and ionized states. The refer-
ence state is the neutral atom in its spherically symmetrized
ground state.

In Table IV we compare the hardness~Ref. 7! of the
all-electron atom and pseudoatom. The hardness is the sec-
ond derivative of the total energy with respect to the occu-
pation numbers,]2E/]ni]nj , wheren1 is the occupation of
thes state andn2 is the occupation of thep state. It is thus a
symmetric 232 matrix.

The ultimate test for any pseudopotential are molecular
calculations. We, therefore, calculated the bond lengths for a
large number of molecules and compared them with the
quasiexact local density approximation~LDA ! limit, as given
by Dickson and Becke.8 The test molecules were chosen in
such a way that they contain not only single bonds, but as

FIG. 1. The pseudopotential coefficients~Table V! exhibit clear
trends along the Periodic Table. In this figure, the decay constants
r loc andr s are shown by the solid line going with the right axis and
the coefficientsC1 , C2 , andh1

s by the three dotted lines going with
the left axis. All these parameters were found by the least square
fitting program.

FIG. 2. The wave functions~full line! and pseudo-wave-
functions~dashed line! for carbon. The difference between them is
shown by the dotted line on a logarithmic scale.

TABLE III. Transferability errors.

Carbon s1 p3 d0 s2 p3 d0 s2 p1 d0 s2 p2 d1

DE ~Ha! 0.3071 0.427231021 0.3618 0.3881
Error ~Ha! 20.3631023 20.2231024 20.3131023 0.1931024

Silicon s1 p3 d0 s2 p3 d0 s2 p1 d0 s2 p2 d1

DE ~Ha! 0.2509 20.563831022 0.2680 0.1707
Error ~Ha! 20.1931023 20.5831024 20.2231023 0.1131023
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well multiple bonds, which typically are shorter than single
bonds and therefore more difficult to describe with a pseudo-
potential. Also molecules, the constituent atoms of which
have large differences in electronegativity were preferably
chosen. In these cases, the inert region9 shrinks considerably,
since the atom with the larger electronegativity imposes its
electronic structure into regions very close to the nucleus of
the less electronegative atom. They are thus the most diffi-
cult molecules for treatment with pseudopotentials. Also, in
these molecules the bond length deviate very much from
what one would obtain by adding the covalent radii.

The results are shown in Table V. We see that the errors
for compounds containing the first row atoms B, C, N, O,
and F, as well as H, are extremely small. These errors arising
from the pseudopotential approximation are of the order of a
few thousands of a Bohr and thus nearly ten times smaller
than the errors arising from the LDA approximation. The
errors for compounds containing the second row atoms are
larger and comparable to the LDA errors. These relatively
large errors can be traced back to the relatively shallow out-
ermost core shells of these second row atoms. The errors are

therefore largest for Al and smallest for Cl. We did not see
an improvement of the situation by adding nonlinear core
correction terms.10 The errors of molecules containing Li,
Be, Na, and Mg are also very small, since the outermost core
levels were included as valence states. It was, however, very
difficult to calculate highly precise bond lengths for these
molecules with our plane wave program. Because these at-
oms are very extended, huge boxes are necessary, in addi-
tion, to high plane wave energy cutoffs resulting in many
millions of plane waves. This large basis set results in a high
numerical noise level and we give the bond length, therefore,
in some cases only to within two digits. Also Dickson and
Becke quote some of these molecules only with two digits of
precision in the bond length. In addition, we also realized
that GAUSSIAN94 using a 62311G11(3d f ,3pd) basis set
does not agree to within a few thousands of a Bohr with
Dickson’s results, as is the case for the other molecules. In
the paper by Dickson and Becke there are no results for the
two molecules with some of the largest differences in elec-
tronegativity, namely, SiF4 and BF3 . We compare them,
therefore, with the results obtained fromGAUSSIAN94 ~Ref.
11! in Table VI. Assuming that these results are correct to
within a few thousands of an Bohr, the errors are then indeed
at the upper end of the typical limit for errors for first and
second row atoms. In summary, we can say that we obtain,
for molecules with only first row atoms, an accuracy that is
nearly equal to the accuracy obtained with an all-electron
calculation using a very good Gaussian basis set. For mol-
ecules involving second row atoms, the accuracy is clearly
inferior. In all cases the accuracy is, however, much better
than what is obtained with standard Gaussian 6231G* basis
sets8,12 and it is comparable or better than the results ob-
tained with other all-electron methods.13 The molecular cal-
culations of Tables V and VI were done within a Fourier
space framework. We duplicated, however, some calcula-
tions in real space and obtained indistinguishable results.

VI. THE PARAMETERS

In the following, we list the parameters that we have
found. We constructed them both for the LDA approxima-
tion and one gradient corrected scheme, namely, the BLYP
~Ref. 14! scheme. Gradient corrected schemes have been ex-
amined in detail.12,15 In general, they do no not significantly
improve bond lengths, but they allow us to treat hydrogen
bonding, which is important in many systems containing first
row atoms. In the case of the LDA approximation, we used a
parametrization for the exchange correlation functional de-
scribed in the Appendix. Since this parametrization does not
have any discontinuities in its derivatives, it results in less

FIG. 3. The wave functions~full line! and pseudo-wave-
functions~dashed line! for silicon. The difference between them is
shown by the dotted line on a logarithmic scale.

FIG. 4. The three dotted lines show the convergence of the total
energy for Si, C, and O~in the order of increasing hardness!. The
dashed line going with the left hand axis shows the convergence of
the total energy for the CO molecule, the solid line going with the
right axis shows the convergence of the bond length in the same
molecule. Not surprising, the total energy convergence in the mol-
ecule is determined and nearly identical to the one of the harder
oxygen.

TABLE IV. Comparison of hardness of atom and pseudoatom.

All-electron atom Pseudoatom

Carbon
0.4288 0.4160 0.4282 0.4160
0.4160 0.4040 0.4160 0.4038

Silicon
0.3129 0.2850 0.3120 0.2846
0.2850 0.2631 0.2846 0.2629
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numerical noise, which was very helpful in the minimization
procedure. In addition, it can also be calculated much faster
numerically. Nevertheless, one can use these pseudopotential
parameters with any other LDA parametrization, without
changing the results on a relevant scale. The entries in Tables
I and II have the following meaning with the notation of the
previous sections:

Element Znuc Zion

r loc C1 C2 C3 C4

r s h1
s h2

s

r p h1
p

VII. CONCLUSIONS

We have presented a different pseudopotential. It is ex-
tremely easy to implement both in real and Fourier space,
since all terms are given analytically and not numerically. Its
optimality property resulting from its dual-space Gaussian
form guarantees optimal efficiency when it is used in real
space. It is highly accurate and even in the worst case of
compounds containing Al, Si, and P the errors of this
pseudopotential do not dominate the errors arising from den-
sity functional theory. In all the molecular calculations that
we did, we could not find a single molecule where the error

TABLE V. Comparison of the bond lengths for several small molecules as obtained with this pseudopo-
tential with the quasiexact LDA result and the experimental data. In the last column, we give the error of the
LDA result compared to experiment. The experimental bond lengths were also taken from Ref. 7.

Molecule PSP bond length~a.u.! Diff. PSP LDA Diff. PSP Expt. Diff. LDA, Expt.

H2: 1.447 0.001 0.046 0.045
Li2: 5.099 -0.021 0.048 0.069
LiH: 3.029 0.000 0.014 0.014
Be2: 4.515 -0.006 -0.115 -0.109
BH: 2.363 -0.010 0.034 0.044
CH4: 2.072 0.000 0.020 0.020
C2H2~CC!: 2.263 -0.006 -0.011 -0.005
C2H2~CH!: 2.028 -0.002 0.023 0.025
N2: 2.067 -0.001 -0.007 -0.006
NH3: 1.931 0.001 0.019 0.018
HCN~CN!: 2.171 -0.003 -0.008 -0.005
HCN~HC!: 2.046 0.007 0.033 0.026
H2O: 1.835 0.002 0.026 0.024
CO: 2.127 -0.002 -0.005 -0.003
CO2: 2.196 0.001 0.004 0.003
F2: 2.622 0.007 -0.046 -0.053
FH: 1.764 0.003 0.031 0.028
CH3F~CF!: 2.605 0.012 -0.007 -0.019
CH3F~CH!: 2.081 -0.001 0.012 0.013
Na2: 5.67 -0.00 -0.15 -0.15
Mg2: 6.46 0.01 -0.89 -0.90
AlH: 3.146 -0.023 0.032 0.055
SiH4: 2.810 -0.011 0.015 0.026
SiO: 2.831 -0.028 -0.022 0.006
P2: 3.547 -0.025 -0.031 -0.006
PH3: 2.695 -0.009 0.024 0.033
PN: 2.790 -0.017 -0.027 -0.010
S3: 3.587 -0.022
H2S: 2.551 -0.005 0.027 0.032
CS: 2.884 -0.012 -0.017 -0.005
CS2: 2.917 -0.010 -0.017 -0.007
HCl: 2.435 -0.004 0.026 0.030
CH3Cl~CCl! 3.328 -0.001 -0.032 -0.031
CH3Cl~CH!: 2.072 0.000 0.022 0.022

TABLE VI. Comparison of the bond lengths for two particularly
difficult molecules as obtained with this pseudopotential and with
GAUSSIAN94 using a 62311G11(3d f ,3pd) basis set.

Molecule PSP bond length~a.u.! Diff. to GAUSSIAN94 LDA b.l.

BF3 2.477 0.011
SiF4 2.926 -0.023
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in the bond length, due to the pseudopotential approxima-
tion, was larger than one percent.
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APPENDIX

Given all of the excellent fits for exchange and correla-
tion, we introduce another only for the sake of computational
convenience. Without going into the problems of other rep-
resentations, the fit described herein has the following prop-
erties: ~1! It requires no transcendental functions,~2! it re-
produces the Perdew-Wang 1992~Ref. 16! results extremely
well from r s50.01 to r s5100, ~3! there are no derivative
discontinuities, ~4! the spin-polarization interpolation is
trivial, ~5! second derivatives are easy to take and they are
required for response functions, and~6! it is much faster to
compute than any other known form. It has the deficiency
that the high density limit of correlation is not reproduced,
but there are two ameliorating factors. The fit is essentially
exact tor s50.01, and much higher densities are not physi-
cal. Indeed, given the doubly occupied hydrogenic 1s state
for z5100, the density at the nucleus corresponds to
r s50.0072. Also, by r s50.01, the exchange correlation
functional is totally dominated by exchange.

This form is based on the following rational polynomial:

exc52
a01a1r s1a2r s

21a3r s
3

b1r s1b2r s
21b3r s

31b4r s
4 .

Each parameter is interpolated betweenz521 to z51
by the function which normally interpolates exchange.

ai~z!5ai1dai f x~z!,

where

f x~z!5
~11z!4/31~12z!4/322

2~21/321!

and

z5
rup2rdn
rup1r dn

.

For consistency between programs, the full double-
precision representation of the constants are given. These are
probably only significant to the fifth or sixth figure,

a050.458 165 293 283 142 9,

da050.119 086 804 055 547,

a152.217 058 676 663 745,

da150.615 740 256 888 334 5,

a250.740 555 173 535 705 3,

da250.157 420 151 589 286 7,

a350.019 682 278 786 179 98,

da350.003 532 336 663 397 157,

b151.000 000 000 000 000 0,

db150.000 000 000 000 000,

b254.504 130 959 426 697,

db250.267 361 297 383 626 7,

b351.110 667 363 742 916,

TABLE VII. Comparison of the accuracy of different exchange correlation forms for the polarized (p) and unpolarized~up! case.

r s Padé~up! PW92 ~up! OB ~up! CA ~up! Pade (p) PW92 (p) OB (p) CA (p)

0.01 -45.966 -46.007 -57.801 -57.823
0.10 -4.7025 -4.7025 -5.8345 -5.8351
0.50 -0.99318 -0.99295 -1.1947 -1.1947
1. -0.51751 -0.51794 -0.51145 -0.51696 -0.60873 -0.60884 -0.60356 -0.60628
2. -0.27364 -0.27384 -0.27120 -0.27329 -0.31258 -0.31254 -0.30954 -0.31145
3. -0.18964 -0.18966 -0.18888 -0.18914 -0.21242 -0.21233 -0.21053 -0.21171
4. -0.14645 -0.14641 -0.14578 -0.14589 -0.16171 -0.16163 -0.16012 -0.16122
5. -0.11991 -0.11985 -0.11912 -0.11934 -0.13096 -0.13090 -0.13008 -0.13063
8. -0.078692 -0.078661 -.078254 -.078181 -.084106 -.084099 -0.083659 -0.083990
10. -0.064397 -0.064389 -0.064081 -0.063971 -0.068198 -0.068209 -0.067905 -0.068125
20. -0.034421 -0.034438 -0.035625 -0.035637
50. -0.014862 -0.014856 -0.015104 -0.015092
100. -0.0077693 -0.0077726 -0.0078393 -0.0078455
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db350.205 200 460 777 778 7,

b450.023 592 917 514 275 06,

db450.004 200 005 045 691 381.

In Table VII we show a numerical comparison of our
Pade form for the exchange correlation energy with the fit of
Perdew and Wang,16 ~PW92! as well as with quantum Monte
Carlo results by Ortiz and Ballone17 ~OB! and by Ceperley
and Alder18 ~CA!.

1D. R. Hamann, M. Schlu¨ter, and C. Chiang, Phys. Rev. Lett.43,
1494 ~1980!; G. B. Bachelet, D. R. Hamann, and M. Schlu¨ter,
Phys. Rev. B26, 4199~1982!.

2L. Kleinmann and D. M. Bylander, Phys. Rev. Lett.48, 1425
~1982!; D. C. Allan and M. P. Teter, Phys. Rev. Lett.59, 1136
~1987!.

3X. Gonze, P. Kaekell, and M. Scheffler, Phys. Rev. B41, 12 264
~1990!; D.J. Singh, H. Krakauer, C. Haas, and A. Y. Liu,ibid.
46, 13 065~1992!.

4R. D. King-Smith, M. C. Payne, and J. S. Lin, Phys. Rev. B44,
13 063~1991!.

5P. Giannozzi~private communication!. It is also possible to find a
very small set of parameters for pseudopotentials of a nonsepa-
rable form.

6E. L. Shirley, D. C. Allan, R. M. Martin, and J. D. Joannopoulos,
Phys. Rev. B40, 3652~1989!.

7R. G. Parr and W. Yang,Density-Functional Theory of Atoms and
Molecules ~Oxford University Press, New York, 1989!; M.
Teter, Phys. Rev. B48, 5031~1993!.

8R. M. Dickson and A. D. Becke, J. Chem. Phys.99, 3898~1993!.
9S. Goedecker and K. Maschke, Phys. Rev. A45, 88 ~1992!.
10S. G. Louie, S. F. Froyen, and M. L. Cohen, Phys. Rev. B26,

1738 ~1982!.
11M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.

Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peters-
son, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V.
G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y.
Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R.
Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees,
J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A.
Pople, Computer CodeGAUSSIAN94, Revision B.2 Gaussian,
Inc., Pittsburgh, PA, 1995.

12B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys.98,
5612 ~1992!.
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