XANES calculation with BigDFT

A. Mirone

1 ESRF

21 Octobre 2011
Outline

1. Basic Formulae
 - Light-Matter Interaction
 - Spectra decomposition

2. from AE to pseudo
 - Introduction
 - \(\tilde{\phi}, \tilde{\rho} \) construction
 - ThePatch
 - Initial state

3. Checks
 - Exact Model
 - Quartz Si K-edge

4. Conclusions

http://inac.cea.fr/L_Sim/BigDFT
Light-Matter Interaction

Interaction Hamiltonian

\[H_{int} = \left(\frac{2\pi\hbar c^2}{\omega V} \right)^{1/2} \left(a_{k,\varepsilon}^\dagger \exp(-i\mathbf{k} \cdot \mathbf{r}) + a_{k,\varepsilon} \exp(i\mathbf{k} \cdot \mathbf{r}) \right) \frac{e}{mc} \mathbf{p} \cdot \mathbf{\varepsilon} \]

Fermi rule (for absorption)

\[\sigma(\hbar\omega) = (2\pi)^2 \alpha_0 \hbar\omega \sum_n |<n|i>|^2 \delta(\hbar\omega - E_n) \]

Initial state

\[|i> = r \cdot \mathbf{\varepsilon} + i \frac{(\mathbf{k} \cdot \mathbf{r})(\mathbf{r} \cdot \mathbf{\varepsilon})}{2} + ... |0> \]
Iterative spectra reconstruction

From a discrete sum to the moments of spectral function

\[f(E) = \sum_n |\langle n| i \rangle|^2 \delta(E - E_n) \]

\[\int f(E) E^n dE = \sum_n \langle i| n \rangle E^n \langle n| i \rangle = \langle i| H^n |i \rangle \]

The moment problem

? A distribution is uniquely determined by its moments?

Yes, excepted pathological cases.

\[\sum_{n=0}^{\infty} \left(\frac{1}{\mu^{2n}} \right) \frac{1}{2n} = +\infty : \text{sufficient condition} \]

Possible numerical instability \(E^n \to 0 \) Or \(E^n \to \infty \)

Chebyshev Polynomials
Iterative spectra reconstruction

Numerically stable method: From E^n to $\text{Chebychev}_n(E)$

Method

- rescale and shift $H \rightarrow H'$ such that $< n|H'|n \in]-1,1[$
- $E^n \rightarrow T_n(E) = \cos(n \ast \arccos(E))$
- $T_0(E) = 1; \ T_1(E) = E$
- $T_{m+1}(E) = 2ET_m(E) - T_{m-1}(E)$
- $\mu_n = \int f'(E)T_n(E) = < i|T_n(H')|i >$
- $T_{m+1}(H')|i \geq 2H'T_m(H')|i > - T_{m-1}(H')|i >$

Generalised Eigen-problem

$$\int f(E)E^n dE = \left| < i|S^{1/2}(S^{-1/2}\bar{H}S^{-1/2})^nS^{1/2}|i > \right| = \left| < i|S(S^{-1}\bar{H})^n|i > \right|$$
Introduction

Goals

- Project the AE initial wf into pseudo-space.
- Stretch the validity domain of the pseudopotential.
- Don't touch valence region.

AE to pseudo

Introduction
- \(\tilde{\phi}, \tilde{p} \) construction
- ThePatch
- Initial wf

Checks
- Exact
- Quartz Si K-edge

Conclusions

http://inac.cea.fr/L_Sim/BigDFT
Ingredients

three classes of atomic wavefunction functions:

- the AE atomic \(\phi_i \)
- the corresponding wavefunctions \(\tilde{\phi}_i \)
- their dual wavefunctions \(\tilde{p}_i \).

Functions properties

- the wavefunctions \(\tilde{\phi}_i \) are identical \(\phi_i \) at the PAW matching radius \(R \) and can be arbitrarily chosen inside the matching sphere \(\Omega_R \).

- the wavefunctions \(\tilde{p}_i \) are zero outside \(\Omega_R \) and must be duals of the \(\tilde{\phi}_i \) wavefunctions: \(\langle \tilde{p}_i | \tilde{\phi}_j \rangle = \delta_{ij} \).
\(\tilde{\phi}, \tilde{\rho} \) construction

\(\tilde{\phi}_i \) are solved in the pseudopotential plus a gaussian correction term.
The PAW patch

Generalised Eigen-Problem

\[H_{\text{patched}} = H + \sum_{i,j} |\tilde{p}_i\rangle \left(E_i^{ae} \delta_{ij} - \langle \tilde{\phi}_i | H | \tilde{\phi}_j \rangle \right) \langle \tilde{p}_j | \right) \]

\[S_{\text{patched}} = S + \sum_{i,j} |\tilde{p}_i\rangle \left(\delta_{ij} - \langle \tilde{\phi}_i | S | \tilde{\phi}_j \rangle \right) \langle \tilde{p}_j | \right) \]

Test

using duality condition

\[\langle \tilde{\phi}_k | H_{\text{patched}} | \tilde{\phi}_i \rangle = \langle \tilde{\phi}_k | E_i^{ae} S_{\text{patched}} | \tilde{\phi}_i \rangle \]
Check on the radial grid

Table: Comparison between AE and pseudo eigenvalues for a radius R_{match} and different values of n_{paw}

<table>
<thead>
<tr>
<th>$L = 0$</th>
<th>(n_{\text{paw}} = 6)</th>
<th>(n_{\text{paw}} = 4)</th>
<th>(n_{\text{paw}} = 2)</th>
<th>(n_{\text{paw}} = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>-75.953</td>
<td>-6.291</td>
<td>0.4116</td>
<td>0.4112</td>
</tr>
<tr>
<td></td>
<td>5.990</td>
<td>5.990</td>
<td>5.7111</td>
<td>2.972</td>
</tr>
<tr>
<td></td>
<td>38.920</td>
<td>26.244</td>
<td>29.269</td>
<td>23.583</td>
</tr>
<tr>
<td></td>
<td>54.858</td>
<td>40.622</td>
<td>37.229</td>
<td>35.943</td>
</tr>
<tr>
<td></td>
<td>73.186</td>
<td>58.728</td>
<td>50.642</td>
<td>50.601</td>
</tr>
<tr>
<td></td>
<td>93.876</td>
<td>72.453</td>
<td>67.530</td>
<td>67.529</td>
</tr>
</tbody>
</table>

http://inac.cea.fr/L_Sim/BigDFT
Check on the radial grid

Table: Comparison between AE and pseudo eigenvalues for a radius R_{match} and different values of n_{paw}

<table>
<thead>
<tr>
<th></th>
<th>$n_{\text{paw}} = 6$</th>
<th>$n_{\text{paw}} = 4$</th>
<th>$n_{\text{paw}} = 2$</th>
<th>$n_{\text{paw}} = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>-4.536</td>
<td>0.920</td>
<td>0.920</td>
<td>0.920</td>
</tr>
<tr>
<td></td>
<td>0.920</td>
<td>0.920</td>
<td>0.920</td>
<td>0.869</td>
</tr>
<tr>
<td></td>
<td>24.329</td>
<td>24.267</td>
<td>19.909</td>
<td>18.227</td>
</tr>
<tr>
<td></td>
<td>37.030</td>
<td>35.939</td>
<td>31.673</td>
<td>29.400</td>
</tr>
<tr>
<td></td>
<td>52.085</td>
<td>45.045</td>
<td>42.885</td>
<td>42.882</td>
</tr>
<tr>
<td></td>
<td>69.474</td>
<td>62.377</td>
<td>58.650</td>
<td>58.649</td>
</tr>
<tr>
<td></td>
<td>89.181</td>
<td>76.691</td>
<td>76.690</td>
<td>76.690</td>
</tr>
<tr>
<td></td>
<td>111.19</td>
<td>97.005</td>
<td>97.000</td>
<td>97.001</td>
</tr>
</tbody>
</table>
Check on the radial grid

Table: Comparison between AE and pseudo eigenvalues for a radius $2R_{match}$ and different values of n_{paw}.

<table>
<thead>
<tr>
<th>$L = 0$</th>
<th>AE</th>
<th>$n_{paw} = 6$</th>
<th>$n_{paw} = 4$</th>
<th>$n_{paw} = 2$</th>
<th>$n_{paw} = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-75.953</td>
<td>-6.292</td>
<td>-0.4746</td>
<td>-0.4701</td>
<td>-0.46943</td>
<td>-0.4751</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.48020</td>
</tr>
<tr>
<td>0.6937</td>
<td>0.69397</td>
<td>0.69424</td>
<td>0.69510</td>
<td>0.67160</td>
<td></td>
</tr>
<tr>
<td>2.4371</td>
<td>2.44523</td>
<td>2.45616</td>
<td>2.42955</td>
<td>2.07141</td>
<td></td>
</tr>
<tr>
<td>4.8684</td>
<td>4.87480</td>
<td>4.86482</td>
<td>3.09596</td>
<td>3.00667</td>
<td></td>
</tr>
<tr>
<td>7.9454</td>
<td>7.92458</td>
<td>6.88421</td>
<td>5.44259</td>
<td>5.12233</td>
<td></td>
</tr>
<tr>
<td>11.645</td>
<td>11.5961</td>
<td>8.65917</td>
<td>8.65662</td>
<td>8.03651</td>
<td></td>
</tr>
<tr>
<td>15.954</td>
<td>15.9640</td>
<td>12.0805</td>
<td>11.5884</td>
<td>11.4968</td>
<td></td>
</tr>
<tr>
<td>20.861</td>
<td>20.7027</td>
<td>16.5836</td>
<td>15.5936</td>
<td>15.5351</td>
<td></td>
</tr>
</tbody>
</table>
Check on the radial grid

Table: Comparison between AE and pseudo eigenvalues for a radius $2R_{match}$ and different values of n_{paw}.

<table>
<thead>
<tr>
<th>$L = 1$</th>
<th>$n_{paw} = 6$</th>
<th>$n_{paw} = 4$</th>
<th>$n_{paw} = 2$</th>
<th>$n_{paw} = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>-4.537</td>
<td>-0.135</td>
<td>0.9327</td>
<td>2.6598</td>
</tr>
<tr>
<td></td>
<td>-0.135</td>
<td>-0.13240</td>
<td>0.9362</td>
<td>2.66523</td>
</tr>
<tr>
<td></td>
<td>0.9327</td>
<td>0.93455</td>
<td>-0.9386</td>
<td>2.6763</td>
</tr>
<tr>
<td></td>
<td>2.6598</td>
<td>2.66523</td>
<td>2.6988</td>
<td>2.6863</td>
</tr>
<tr>
<td></td>
<td>5.0337</td>
<td>5.02465</td>
<td>4.3418</td>
<td>2.6988</td>
</tr>
<tr>
<td></td>
<td>8.0227</td>
<td>7.99939</td>
<td>6.5429</td>
<td>2.6988</td>
</tr>
<tr>
<td></td>
<td>11.610</td>
<td>11.6710</td>
<td>9.6590</td>
<td>2.6988</td>
</tr>
<tr>
<td></td>
<td>15.785</td>
<td>15.7333</td>
<td>13.397</td>
<td>9.6590</td>
</tr>
<tr>
<td></td>
<td>20.541</td>
<td>19.9395</td>
<td>17.797</td>
<td>13.397</td>
</tr>
<tr>
<td></td>
<td>25.873</td>
<td>25.0420</td>
<td>22.772</td>
<td>17.797</td>
</tr>
</tbody>
</table>

http://inac.cea.fr/L_Sim/BigDFT

A. Mirone
ESRF
Initial state

The Projector

- For a localized state \(r < R_{\text{match}} \) \(P = \sum_i |\tilde{\psi}_i\rangle \langle \psi_i| \)
- Is the initial \(\psi \) localised?

- the core orbitals are not propagated by the Hamiltonian

http://inac.cea.fr/L_Sim/BigDFT

A. Mirone

ESRF
The Model

- spherical AE potential $V_{Si}(r)$ plus a perturbation
 $V(r) = V_{Si}(r) + Y_1^0(\hat{r}) \exp(-(r - r_c)^2/(2\sigma^2)) \cdot h$
- initial wf: dipole operator z times the 1s orbital.
- rotational invariance along the z axis

The solution

- $\psi(E, r) = \sum_l Y_1^0(\hat{r}) c_l(E, r)$
- $-\frac{1}{2} \partial_r^2 c_l(E, r) = (E - V_l(r)) c_l(E, r) + W_{lp}(r) c_p(E, r)$

The Test

- $r_c = 7.5$ a.u
- $h = 3$ Hartree
- $\sigma = 0.8$ A.U
Exact Model

![Graph showing absorption spectra comparison between Exact solution and BigDft 8000 Chebychev components.](http://inac.cea.fr/L_Sim/BigDFT)
Quartz Si K-edge

The SCF calculation
- 72 atoms unit cell (18 for the tutorial)
- One ionised Si atom (charged cell)
- Z+1 approximation, Phosphorus
 but **pseudo** already could do Silicon with 1s hole

The spectra calculation
- 72 atoms unit cell plus K-points
- No need for energy dependent convolution (plasmon effect small for quartz)

http://inac.cea.fr/L_Sim/BigDFT
Quartz Si K-edge

Bigger cell, kptrlenght=50 a.u.

http://inac.cea.fr/L_Sim/BigDFT
Conclusions

- new procedure for PAW patch
- large energy range
- neutral on valence wavefunctions
- Subtle tricks for the initial wf.
- Complex gaussians fit.
- Numerically robust implementation: Chebyshev, BigDft
- Exact Model : perfect
- Experiment : good agreement
- A good basis to enter more advanced formalism ..
- To be submitted :

A.Mirone L. Genovese

Xanes calculation with generic pseudopotentials.

http://inac.cea.fr/L_Sim/BigDFT
PATCH YOU USB KEY

scp yourloginname@rotule.imag.fr:~/amirone/* ~/Desktop