Cecam tutorial - Wavelets in electronic structure

LYON - FRANCE

Introduction to the BigDFT library

Damien Caliste

L_Sim - CEA Grenoble

28 November 2007
First glimpse, “Do I need my umbrella?”

The BigDFT library

<table>
<thead>
<tr>
<th>Wavelets</th>
<th>PW</th>
<th>Gaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground state + forces</td>
<td>☀️</td>
<td>☀️</td>
</tr>
<tr>
<td>Isolated conditions</td>
<td>☀️</td>
<td>☁️</td>
</tr>
<tr>
<td>Arbitrary precision</td>
<td>☀️</td>
<td>☀️</td>
</tr>
<tr>
<td>Elec. field & charged sys.</td>
<td>☀️</td>
<td>☁️</td>
</tr>
<tr>
<td>Collinear spin</td>
<td>☀️</td>
<td>☀️</td>
</tr>
<tr>
<td>Metallic systems</td>
<td>⌚️</td>
<td>☀️</td>
</tr>
<tr>
<td>Surfaces</td>
<td>⌚️</td>
<td>☁️</td>
</tr>
<tr>
<td>Periodic boundary conditions</td>
<td>⌚️</td>
<td>☀️</td>
</tr>
</tbody>
</table>

Objectives of the lesson

- To know what are the main steps in a GS calculation
- To learn some elements on the manipulated objects

EU Nest Adventure - BigDFT project

www.abinit.org
Structure of the calculation in the wavelet basis set

1. The electronic minimisation loop
2. The input guess
3. Possible add-on calculations after fix point is reached
4. A fully parallelised code

Structure of the objects in the calculation

1. How to describing the electronic wavefunctions on a wavelet basis set?
2. Available operators in BigDFT
The DFT framework

The ground state is obtained by solving:

\[H\psi = E\psi \]

- Expressed only for the electrons, using the Born-Oppenheimer approximation;
- Solved in the framework of Kohn-Sham, using one particule wavefunctions;
- Use of a self-consistency loop since the Hamiltonian \(H \) depends on \(\psi \).

What about wavelets?

Wavelets are the basis set for the representation of the wavefunctions. Thus things like \(\text{XC approximation} \) or Hellmann-Feynman theorem are still usable.
Elements of the Hamiltonian H

All classical parts present in plane-waves, can also be treated with wavelets.

The kinetic operator $\nabla^2 \psi$

Computed from the wavefunctions ψ, applying a **local filter**. Length for Daubechies is 28, see `Convolkinetic()` routine.

Finite differences in 1D:

$$\Delta f(x_n) = \frac{f(x_{n-1}) - 2f(x) + f(x_{n+1})}{h^2}$$

is a filter of $(1, -2, 1)$.

Precision is $O(h^{14})$ for arbitrary function. Even exact for linear combination of Daubechies functions:

$$f(x) = \sum_\ell c_\ell \phi_\ell(x), \quad \nabla^2 f(x) = \sum_\ell \tilde{c}_\ell \phi_\ell(x),$$

$$\tilde{c}_\ell = \sum_j c_j a_{\ell-j}, \quad a_\ell \equiv \int \phi_0(x) \frac{\partial^2}{\partial x^2} \phi_\ell(x).$$
The non-local part of pseudo-potentials

Computed from the scalar product of wavefunctions Ψ and the projectors, done in routine `applyprojectorsone()`. This is possible for GTH and HGH pseudo-potentials because of the spatial separability in their analytic expression.

Possible future developments may be done to include some other pseudo-potential families.
Elements of the Hamiltonian H

The local potentials, V_H V_{xc} V_{psploc} & V_{ionic}

Hartree and ionic potentials are computed with a Poisson solver from the density $ρ(\vec{j})$.

$$V_H(\vec{j}) = \int d\vec{x} \frac{ρ(\vec{x})}{|\vec{x} - \vec{j}|}, \quad V_{xc}(\vec{j}) \text{ with ABINIT XC routines and}$$

$$V_{ionic}(\vec{j}) = \Sigma_κ \int d\vec{x} \frac{Z_κ}{|\vec{x} - \vec{j}|}$$

This Poisson solver is:

- **✓** very **fast and accurate**, with optimal parallelisation;
- **✓** can be used **independently** from the DFT code;
- **✓** integrated quantities (energies) are easy to extract;
- **✓** correct treatment of **isolated boundary conditions** and of charge offset;
- **✗** non-adaptive, needs data uncompression.

EU Nest Adventure - BigDFT project

www.abinit.org
Finding the fix point in Schrödinger equation

Two possible methods: the diagonalisation and the direct minimisation. The latter is fast and simple but restricted to systems with a non-zero HOMO-LUMO gap.

To improve convergency, preconditioning is done on the gradients $H\Psi$ using the routine `precondition()`.

$$\left(\frac{1}{2}\nabla^2 + C\right)\vec{p} = \vec{g}$$

\vec{p} is computed in an iterative way (CG).

Classical gradient algorithms are applied for electronic minimisation: steepest descent or DIIS [Pulay, Chem. Phys. Lett. 73, 393 (1980)].

Future developments

Diagonalisation will be developed in later release. It will enable polarisation studies or fully metallic systems.
On the contrary to plane waves, wavelet representation requires a good input start for the minimisation loop.

Using atomic orbitals

The input guess is based on atomic orbitals, using the following scheme:

- project gaussian atomic orbitals in a Daubechies wavelet basis set (see the gauss_to_daub() routine);
- compute the associated hamiltonian;
- diagonalise it in this basis set;
- use the lowest states as input for the calculation.

This is done in input_wf_diag() routine.
The input guess, take a good start!

Tips! Get a look on the **evale** output

The eigenvalues in the input guess give an idea of the **electronic symmetry** of the system.

Computed eigenvalues of the atomic orbitals of a single carbon atom.

BigDFT output of input guess

```plaintext
evale(1)= -4.69845419157335E-01
evale(2)= -1.67943794696384E-01 <- Last eigenvalue for input wavefunctions
evale(3)= -1.67943794696384E-01 <- found degeneracy
evale(4)= -1.67941568022003E-01 <- found degeneracy
```

The first two eigenvalues are populated, but the two second are close enough to create a degeneracy around Fermi level.
Additional computation after minimisation

Getting the Kohn-Sham wavefunctions

A diagonalisation is done on output of the minimisation loop by the `KStrans()` routine.

Compute the forces

The forces are sum of two parts:

- the local contribution, computed with the Poisson solver, see `local_forces()` routine;
- the non-local part, coming from the first derivatives of projectors. See `projectors_derivatives()` and `nonlocal_forces()` routines.

Finite-size effects - an error estimation

After convergency, the basis set can easily be expanded to estimate these effects.

EU Nest Adventure - BigDFT project

www.abinit.org
Parallelism in BigDFT

What to do?
- Minimisation loop
- The input guess
- Post-minimisation

How to?
- Storing the WF
- Real space operators

BigDFT - an introduction

Wavefunctions
Orbitals are distributed over CPUs.

Density and potentials
Divided among CPUs: z-planes parallelisation.
Parallelism in BigDFT

Wavefunctions

Orbitals are distributed over CPUs.

Required communications:
- for orthogonality
 \[\text{MPI_ALLTOALL} \];
- for the density
 \[\text{MPI_REDUCE_SCATTER} \].

Density and potentials

Divided among CPUs:
- \text{\textit{z}-planes parallelisation}.

Required communications:
- FFT communication in the Poisson solver.

Full parallelisation

There is no direct bottleneck with CPU numbers, making the code ready for both workstations and massively parallel computers.
- memory is divided;
- CPU time is also divided.
Overview

BigDFT library 1.0

Minimisation loop

Input guess in LCAO
- project atomic orb. in Daubechies;
- diagonalise + take lowest eigen-values.

Compute density.

Kinetic operator

Preconditioner

Local potentials

Non-local op.

Stp. desc. / DIIS

HΨ

ρ

V_{XC}

V_{H}

V_I

Ψ

Forces computation
- projector first derivatives;
- non local forces;
- local forces.

local_forces() & non_local_forces()

Kohn-Sham diag.

create Ionic Potential()

Overview

BigDFT - an introduction

What to do?
Minimisation loop
The input guess
Post-minimisation
Parallelism

How to?
Storing the WF
Real space operators

EU Nest Adventure - BigDFT project

www.abinit.org
Wavefunctions are expressed in a Daubechies wavelet basis set, for the following reasons:

Orthogonality

Daubechies are an orthogonal wavelet family. Scalar products are thus immediate.

Multi-resolution

Locality: density of degrees of freedom can be located near atoms. Void areas can be low density or even ignored zones.

Adaptivity: with pseudo-potential approximation, a 2-resolution level is enough for electronic computation.
The wavelet basis set

On a discretised mesh \([i,j,k]\) for one resolution:

\[
f(i,j,k) = \sum_{l,m,n} c_{l,m,n} \phi_{N_x}^l(i) \phi_{N_y}^m(j) \phi_{N_z}^n(k)
\]

Schematic view for a multi-resolution grid in 2D
The two-resolution grid around a water molecule

Number of degrees of freedom can vary with the position in space of each grid point.

The grid is divided in:
- **Low** resolution pts (SF, 1 DoF)
- **High** resolution pts (SF + W, 8 DoF)

Points of different resolution belong to the same grid.

Advantage

Number of data are more optimum. Data can thus be stored in compressed form.
Wavefunction storage in BigDFT

The compression is a compact storage of non-null wavelet coefficients in \(\psi(nvctr_c+7*nvctr_f,norb) \) array. Access keys are stored in the `wavefunctions_descriptors` public type.

The structure is symmetric for coarse and fine grid points.

- \(nseg \) is the number of segments \((nseg_c=2)\);
- \(nvctr \) is the number of non-null grid points \((nvctr_f=9)\);
- \(\text{keyg}(2,nseg) \) gives the start and stop of each grid segment \((\text{keyg_f}(:,1)=(2, 4))\);
- \(\text{keyv(nseg)} \) gives the segment positions in \(\psi \) array \((\text{keyv_c}(2)=6)\).
Overview of wavelet families used in BigDFT code

Daubechies \(f(x) = \sum_\ell c_\ell \phi_\ell(x) \)

- **Orthogonal set**
 \[c_\ell = \int dx \phi_\ell(x)f(x) \]

No need to calculate overlap matrix of basis functions
Used for wavefunctions, scalar products

Interpolating \(f(x) = \sum_j f_j \phi_j(x) \)

- **Dual to dirac deltas**
 \[f_j = f(j) \]

The expansion coefficients are the point values on a grid
Used for charge density, function products

Magic Filter method (A.Neelov, S. Goedecker)

The passage between the two basis sets can be performed without losing accuracy
Overview

BigDFT - an introduction

What to do?
Minimisation loop
- The input guess
Post-minimisation
Parallelism

How to?
- storing the WF
- Real space operators

BigDFT library 1.0

Overview:
- input_wf_diag()
- compute density
- eXch-Corr. pot
- Hartree potential
- Kinetic operator
- Local potentials
- Non-local op.
- Preconditioner
- Stp. desc. / DIIS

Forces computation:
- projector first derivatives
- non local forces
- local forces

Kohn-Sham diag.

Legend:
- public routine
- Daubechies wvl.
- Interpolating wvl.