Daubechies Wavelets and Interpolating Scaling Functions and Application on PDEs

R. Schneider
F. Krüger

TUB - Technical University of Berlin

November 22, 2007
Conditions that fulfill the Daubechies wavelets:

1. They perform an orthonormal basis.
2. They have p vanishing moments for a given $p \in \mathbb{N}$.
3. They have the minimal support of all functions that fulfill the first two conditions.
4. They are rather smooth.
The Fourier transform of a function f is defined by

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(x) e^{-i\omega x} \, dx$$

Given a scaling function φ and its corresponding wavelet ψ with its refinement equations

$$\varphi = \sum_k h_k \varphi^1_k$$
$$\psi = \sum_k g_k \varphi^1_k.$$
In Fourier space it gets to

\[
\hat{\varphi}(\omega) = \frac{\sqrt{2}}{2} h\left(\frac{\omega}{2}\right) \hat{\varphi}\left(\frac{\omega}{2}\right)
\]

\[
\hat{\psi}(\omega) = \frac{\sqrt{2}}{2} g\left(\frac{\omega}{2}\right) \hat{\varphi}\left(\frac{\omega}{2}\right)
\]

with

\[
h(\omega) = \sum_{k \in \mathbb{Z}} h_k e^{-ik\omega}
\]

\[
g(\omega) = \sum_{k \in \mathbb{Z}} g_k e^{-ik\omega}.
\]

By successive application of (1) we get

\[
\hat{\varphi}(\omega) = \hat{\varphi}(0) \prod_{k=1}^{\infty} \frac{h(2^{-k}\omega)}{\sqrt{2}}
\]

if \(\varphi \) is continuous at 0.
There is no analytical formula for the Daubechies scaling functions and wavelets. But you can compute exactly the filters h and g. They are tabulated in the internet, for example at wikipedia.
Computation of the Daubechies Wavelets

With the filters you can use the formulae in the Fourier space.

\[
\hat{\varphi}(\omega) = \prod_{k=1}^{\infty} \frac{h(2^{-k}\omega)}{\sqrt{2}}
\]

\[
\hat{\psi}(\omega) = \frac{1}{\sqrt{2}} g\left(\frac{\omega}{2}\right) \hat{\varphi}\left(\frac{\omega}{2}\right)
\]

with

\[
h(\omega) = \sum_{k \in \mathbb{Z}} h_k e^{-ik\omega}
\]

\[
g(\omega) = \sum_{k \in \mathbb{Z}} g_k e^{-ik\omega}.
\]
Figure: Daubechies scaling functions φ with $p = 2, 3, 4$ and 5.
Figure: Daubechies wavelets ψ with $p = 2, 3, 4$ and 5.
Vanishing Moments

A very important property of the Daubechies wavelets are the vanishing moments

$$\int_{\mathbb{R}} x^k \psi(x) \, dx = 0, \quad k = 0, \ldots, p - 1.$$

That also means that every polynomial of degree at most $p - 1$ is in V_0 in a compact subset K of \mathbb{R}. For example is $f = 1_K \in V_0|_K$. The series $(\sum_{k=-n}^{n} \varphi_k(x))_{n \in \mathbb{N}}$ is converging pointwise to the unity.
In the picture is shown the function

\[f = \sum_{k=0}^{10} \varphi_k \]

with \(\varphi \) the Daubechies scaling function of order \(p = 2 \).
An interpolating scaling function ϕ fulfills

$$\phi(k) = \delta_k, \quad k \in \mathbb{Z}.$$

Since the Daubechies scaling functions φ_k are orthonormal we get an interpolating scaling function ϕ (Interpolet) by folding the Daubechies function with itself.

$$\phi(t) = \int_{\mathbb{R}} \varphi(u)\varphi(u - t)du = \varphi \star \overline{\varphi}(t),$$

where

$$\overline{\varphi}(t) = \varphi(-t).$$
The interpolation property can be easily seen:

\[\phi(k) = \int_{\mathbb{R}} \varphi(u)\varphi(u-k)du = \langle \varphi, \varphi_k \rangle = \delta_k. \]

For the filter \(h^I \) corresponding to \(\phi \) we get

\[h^I_k = (h \ast \overline{h})_k. \]

To hold the interpolating property for \(j \in \mathbb{Z} \) we omit the normalisation factor:

\[\phi^j_k(x) = \phi(2^j x - k). \]
Figure: Interpolating scaling function ϕ for $p = 2, 3, 4$ and 5.
With Interpolets we have a very simple projection P^J onto V^J:

$$P^J f = \sum_{k \in \mathbb{Z}} f(x_k) \phi^J_k, \quad x_k = 2^{-J} k$$

This projection is called interpolation projection or collocation projection.
Moments

We want to compute the moments

\[M_k = \int_{\mathbb{R}} x^k \varphi(x) \, dx = \int_0^{2p-1} x^k \varphi(x) \, dx. \]

By using the refinement equation we get

\[M_k = \sqrt{2} \sum_l h_l \int_{\mathbb{R}} x^k \varphi(2x - l) \, dx \]

\[= \frac{\sqrt{2}}{2^{k+1}} \sum_l h_l \int_{\mathbb{R}} (x + l)^k \varphi(x) \, dx \]

\[= \frac{\sqrt{2}}{2^{k+1}} \sum_l h_l \sum_{j=0}^{k} \binom{k}{j} l^j M_{k-j}. \]
Using the fact that $M_0 = 1$ we get the recursion formula

$$
M_k = \frac{1}{\sqrt{2}(2^k - 1)} \sum_{l=0}^{2p-1} h_l \sum_{j=1}^{k} \binom{k}{j} l^j M_{k-j} \quad \text{for } k > 0.
$$

With the M_k we can easily compute

$$
\langle x^k, \varphi^j \rangle = \int_{\mathbb{R}} x^k \varphi^j(x) \, dx
$$

$$
= 2^{-j k - j/2} \int_{\mathbb{R}} (x + l)^k \varphi(x) \, dx
$$

$$
= 2^{-j k - j/2} \sum_{m=0}^{k} \binom{k}{m} l^m M_{k-m}.
$$
Therefore for any polynomial π the integral

$$\langle \pi, \varphi^j_l \rangle = \int_{\mathbb{R}} \pi(x) \varphi^j_l(x) dx$$

is exactly computable. For computing

$$\langle f, \varphi^j_l \rangle$$

where you know the function values of some nodes of f, you can do a polynomial interpolation with a polynomial π_f and integrate

$$\int_{\mathbb{R}} \pi_f(x) \varphi^j_l(x) dx \approx \int_{\mathbb{R}} f(x) \varphi^j_l(x) dx.$$
Computing $\langle D\varphi^j, D\varphi_k^j \rangle$

φ' satisfies a refinement equation, too:

$$D\varphi = \sum_k h_k D\varphi_k^1.$$

We can use this to compute

$$a_k = \langle D\varphi, D\varphi_k \rangle.$$
Computing Integrals

\[a_k = \sum_l \sum_m h_l h_m \langle D\varphi_l^1, D\varphi_{2k+m}^1 \rangle \]

\[= 4 \sum_l \sum_m h_l h_{m-2k} \langle D\varphi, D\varphi_{m-l} \rangle \]

\[= 4 \sum_l (h_l \sum_m h_{l+m-2k}) a_l \]

If you set \(H_{k,l} = 4h_l \sum_m h_{l+m-2k} \) you have the eigen equation

\[H a = a \]

i.e. you have to compute an eigenvector for the eigenvalue 1. It can be shown that this eigenvector is unique up to normalisation. To find the correct normalisation of the \(a'_k \)'s we use the equation

\[\sum_k k^2 a_k = 2 \]

which holds for \(p \geq 3 \).
For $a^j_k = \langle D\varphi^j, D\varphi^j_k \rangle$ you have

$$a^j_k = 2^{2j} \langle D\varphi, D\varphi_k \rangle.$$

Remark: It holds

$$a^j_k = -\Delta \varphi^j_k(0).$$
Computing $\langle \varphi, \phi_k \rangle$

With the same trick as before you can compute

$$b_k = \langle \varphi, \phi_k \rangle$$

$$= \sum_l \sum_m h_l h_m^I \langle \varphi_l^1, \phi_{2k+m}^1 \rangle$$

$$= 2^{-1/2} \sum_l \sum_m h_l h_{m-2k}^I \langle \varphi, \phi_{m-l} \rangle$$

$$= 2^{-1/2} \sum_l \left(h_l \sum_m h_{l+m-2k}^I \right) b_l.$$
With \(\tilde{H}_{k,l} = 2^{-1/2} \sum_m h^I_{l+m-2k} \) we have the equation

\[\tilde{H} b = b, \]

i.e. we search an eigenvector of \(\tilde{H} \) for the eigenvalue 1. Here you also have to find a further information to achieve a unique solution. For \(b^j_k = \langle \varphi^j, \phi^j_k \rangle \) we get

\[b^j_k = 2^{-j/2} b_k. \]
Until now we only considered one dimensional functions. If φ is a scaling function we define a d-dimensional scaling function Φ as follows.

$$\Phi(x_1, \ldots, x_d) = \prod_{i=1}^{d} \varphi(x_i)$$

For $k = (k_1, \ldots, k_d) \in \mathbb{Z}^d$ and $j \in \mathbb{Z}$ we define

$$\Phi^j_k(x_1, \ldots, x_d) = \prod_{i=1}^{d} \varphi^{j}_{k_i}(x_i).$$

Then with

$$V^j = \text{span}\{\Phi^j_k | k \in \mathbb{Z}^d\} = \bigotimes_{i=1}^{d} V^j$$

we get a MRA for $L_2(\mathbb{R}^d)$.

R. Schneider F. Krüger

Daubechies Wavelets and Interpolating Scalind

November 22, 2007 28 / 1
The wavelet spaces are a little bit more complicated. With $W_0^j = V^j$ and $W_1^j = W^j$ we have

\begin{align*}
\mathbf{V}^J &= \bigotimes_{i=1}^{d} V^J \\
\quad &= \bigotimes_{i=1}^{d} (V^{J-1} \oplus W^{J-1}) \\
\quad &= \bigoplus_{e \in \{0,1\}^d} \bigotimes_{i=1}^{d} W_{e_i}^{J-1}.
\end{align*}

That means that in d dimensions we have $2^d - 1$ different wavelets. For example, for $d = 3$, we have

\[
\begin{align*}
\psi_1 &= \phi \otimes \phi \otimes \psi, \\
\psi_2 &= \phi \otimes \psi \otimes \phi, \\
\psi_3 &= \phi \otimes \psi \otimes \psi, \\
\psi_4 &= \psi \otimes \phi \otimes \phi, \\
\psi_5 &= \psi \otimes \phi \otimes \psi, \\
\psi_6 &= \psi \otimes \psi \otimes \phi, \\
\psi_7 &= \psi \otimes \psi \otimes \psi.
\end{align*}
\]
If we pass to more levels, we can do it in two ways.

1. **isotrop:**

\[
V^J = \bigoplus_{i=1}^{d} V^0 \oplus \bigoplus_{j=0}^{J-1} \bigoplus_{e \in \{0,1\}^d \setminus \{0\}} W^j_{e_i}
\]

2. **anisotrop:** With the notation \(W^{-1} = V^0 \)

\[
V^J = \bigoplus_{j_1=-1}^{J-1} \bigoplus_{j_2=-1}^{J-1} \cdots \bigoplus_{j_d=-1}^{J-1} \bigoplus_{i=1}^{d} W^j_i
\]
Isotropic Decomposition

\[V^3 \otimes V^3 \]
Isotropic Decomposition

\[
\begin{array}{c|c}
V^2 \otimes W^2 & W^2 \otimes W^2 \\
V^2 \otimes V^2 & W^2 \otimes V^2 \\
\end{array}
\]
Isotropic Decomposition

<table>
<thead>
<tr>
<th>$V^2 \otimes W^2$</th>
<th>$W^2 \otimes W^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V^1 \otimes W^1$</td>
<td>$W^1 \otimes W^1$</td>
</tr>
<tr>
<td>$V^1 \otimes V^1$</td>
<td>$W^1 \otimes V^1$</td>
</tr>
<tr>
<td></td>
<td>$W^2 \otimes V^2$</td>
</tr>
</tbody>
</table>
Isotropic Decomposition

\[
\begin{array}{cc}
V^2 \otimes W^2 & W^2 \otimes W^2 \\
V^1 \otimes W^1 & W^1 \otimes W^1 \\
V^0 \otimes W^0 & W^0 \otimes W^0 \\
V^0 \otimes V^0 & W^0 \otimes V^0 \\
\end{array}
\]
Anisotropic Decomposition

\(V^3 \otimes V^3 \)
Anisotropic Decomposition

<table>
<thead>
<tr>
<th>$V^2 \otimes W^2$</th>
<th>$W^2 \otimes W^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V^2 \otimes V^2$</td>
<td>$W^2 \otimes V^2$</td>
</tr>
</tbody>
</table>
Anisotropic Decomposition

\[
\begin{array}{ccc}
V^1 \otimes W^2 & W^1 \otimes W^2 & W^2 \otimes W^2 \\
V^1 \otimes W^1 & W^1 \otimes W^1 & W^2 \otimes W^1 \\
V^1 \otimes V^1 & W^1 \otimes V^1 & W^2 \otimes V^1 \\
\end{array}
\]
Anisotropic Decomposition

<table>
<thead>
<tr>
<th>$V^0 \otimes W^2$</th>
<th>$W^0 \otimes W^2$</th>
<th>$W^1 \otimes W^2$</th>
<th>$W^2 \otimes W^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V^0 \otimes W^1$</td>
<td>$W^0 \otimes W^1$</td>
<td>$W^1 \otimes W^1$</td>
<td>$W^2 \otimes W^1$</td>
</tr>
<tr>
<td>$V^0 \otimes V^0$</td>
<td>$W^0 \otimes V^0$</td>
<td>$W^1 \otimes V^0$</td>
<td>$W^2 \otimes V^0$</td>
</tr>
</tbody>
</table>
Given an equation

\[Au - f = 0 \]

for a given function \(f \) and operator \(A \). We are looking for the solution \(u \) in a Hilbert space \(H \). (??) is equivalent to

\[\langle Au - f, v \rangle = 0 \quad \text{for all } v \in H. \]
Galerkin Scheme

We want to approximate the solution u in a N-dimensional subspace of H and denote the approximated solution by u_N. Let \(\{v_1, \ldots, v_N\} \) be an orthonormal basis for V_N. We are getting the equations

\[
\langle Au_N - f, v_i \rangle = 0, \quad i = \{1, \ldots, n\}.
\]

We make the ansatz $u_N = \sum_{k=1}^{N} \lambda_k v_k$. We define the matrix A and the vector f by

\[
A_{k,l} = \langle Av_k, v_l \rangle, \quad f_k = \langle f, v_k \rangle.
\]

Then we have to solve the linear system

\[
A \lambda = f.
\]
Collocation Scheme

We make the ansatz

\[u_N = \sum_{k} u(x_k) v_k. \]

Here the \(v_k \) don't have to be orthonormal. Here are the Interpolets \(\phi_{k}^{j} \) senseful. This leads to the equations

\[(Au_N - f)(x_k) = 0, \quad k = 1, \ldots, N. \]

By defining \(A \) and \(f \) by

\[A_{k,l} = (Av_l)(x_k), \quad f_k = f(x_k) \]

we get the linear system

\[Au = f, \quad \text{with } u_k \approx u(k). \]
References
