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Optimizations of atomic positions belong to the most commonly performed tasks in electronic struc-
ture calculations. Many simulations like global minimum searches or characterizations of chemical
reactions require performing hundreds or thousands of minimizations or saddle computations. To
automatize these tasks, optimization algorithms must not only be efficient but also very reliable.
Unfortunately, computational noise in forces and energies is inherent to electronic structure codes.
This computational noise poses a severe problem to the stability of efficient optimization methods
like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique
that allows obtaining significant curvature information of noisy potential energy surfaces. We use
this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized
quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the
minimizer and the saddle finding approach are superior to comparable existing methods. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4905665]

I. INTRODUCTION

Stationary points are the most interesting and most impor-
tant points of potential energy surfaces. The relative ener-
gies of local minima and their associated configuration space
volumes determine thermodynamic equilibrium properties.1

According to transition state theory, dynamical properties
can be deduced from the energies and the connectivity of
minima and transition states.2 Therefore, the efficient deter-
mination of stationary points of potential energy surfaces is of
great interest to the communities of computational chemistry,
physics, and biology. Clearly, optimization and, in particular,
minimization problems are present in virtually any field. This
explains why the development and mathematical character-
ization of iterative optimization techniques are important and
longstanding research topics, which resulted in a number of
highly sophisticated methods like, for example, direct inver-
sion of the iterative subspace (DIIS),3,4 conjugate gradient
(CG),5 or quasi-Newton methods like the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm6–9 and its limited mem-
ory variant (L-BFGS).10,11 Since for a quadratic function,
Newton’s method is guaranteed to converge within a single
iteration, it is not surprising that the BFGS and L-BFGS algo-
rithms belong to the most efficient methods for minimizations
of atomic systems.1

If the potential energy surface can be computed with an
accuracy on the order of the machine precision, the above
mentioned algorithms usually work extremely well. In prac-
tice, however, computing the energy surface at this high preci-
sion is not possible for physically accurate but computationally
demanding levels of theory like, for example, density func-
tional theory (DFT). At DFT level, this is due to the finitely

a)stefan.goedecker@unibas.ch

spaced integration grids and self consistency cycles that have to
be stopped at small, but non-vanishing thresholds. Therefore,
optimization algorithms that are used at these accurate levels
of theory must not only be computationally efficient but also
tolerant of noise in forces and energies. Unfortunately, the
very efficient L-BFGS algorithm is known to be noise-sensitive
and, therefore, frequently fails to converge on noisy potential
energy surfaces. For this reason, the fast inertial relaxation
engine (FIRE) has been developed.12 FIRE is a method of the
damped molecular dynamics (MD) class of optimizers.13,14 It
accelerates convergence by mixing the velocity at every MD
step with a fraction of the current steepest descent direction.
A great advantage of FIRE is its simplicity. However, FIRE
does not make use of any curvature information and, therefore,
usually is significantly less efficient than the Newton or quasi-
Newton methods.

Potential energy surfaces are bounded from below, and
therefore, descent directions guarantee that a local minimum
will finally be found. Furthermore, the curvature at a minimum
is positive in all directions. This means, all directions can
be treated on the same footing during a minimization. The
situation is different for saddle point optimizations. A saddle
point is a stationary point at which the potential energy surface
is at a maximum with respect to one or more particular direc-
tions, and at a minimum with respect to all other directions.
Close to a saddle point, it is therefore not possible to treat
all directions on the same footing. Instead, one has to single
out the directions that have to be maximized. Furthermore,
far away from a saddle point, it is usually impossible to tell,
which search direction guarantees to finally end up in a saddle
point. Therefore, saddle point optimizations typically are more
demanding and significantly less reliable than minimizations.

In this contribution, we present a technique that allows
to extract curvature information from noisy potential energy

0021-9606/2015/142(3)/034112/9/$30.00 142, 034112-1 © 2015 AIP Publishing LLC
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surfaces. We explain how to use this technique to construct a
stabilized quasi-Newton minimizer (SQNM) and a stabilized
quasi-Newton saddle (SQNS) finding method. Using bench-
marks, we demonstrate that both optimizers are robust and
efficient. The comparison of SQNM to L-BFGS and FIRE and
of SQNS to an improved dimer method15,16 reveals that SQNM
and SQNS are superior to their existing alternatives.

II. METHODS

A. Newton’s and quasi Newton’s method

The potential energy surface of an N-atomic system is a
map E :R3N → R that assigns to each atomic configuration R
a potential energy. It is assumed that a second order expansion
of E (R) about a point Ri is possible

E (R) ≈ E
�
Ri

�
+
�
R−Ri

�T
∇E

�
Ri

�

+
1
2
�
R−Ri

�T
HRi

�
R−Ri

�
, (1)

∇E (R) ≈ ∇E
�
Ri

�
+HRi

�
R−Ri

�
. (2)

Here, HRi is the Hessian of the potential energy surface
evaluated at Ri. If R is a stationary point, the left hand side
gradient of Eq. (2) vanishes and Newton’s optimization method
follows

Ri+1 =Ri−H−1
Ri∇E

�
Ri

�
. (3)

In the previous equation, R was renamed to Ri+1 in order
to emphasize the iterative character of Newton’s method for
non-quadratic potential energy surfaces.

In practice, it is in most cases either impossible to calculate
an analytic Hessian or it is too time consuming to compute it
numerically by means of finite differences at every iteration.
Therefore, quasi-Newton methods use an approximation to the
exact Hessian that is computationally less demanding. Using
a constant multiple of the identity matrix as an approximation
to the Hessian results in the simple steepest descent method.
In most cases, such a choice is a very poor approximation to
the true Hessian. However, improved approximations can be
generated from local curvature information which is obtained
from the history of the last nhist displacements ∆RiBRi−Ri−1

and gradient differences ∆gi B ∇E
�
Ri
�
−∇E

�
Ri−1�, where i

= 1, . . ., nhist.

B. Significant subspace in noisy
optimization problems

In noisy optimization problems, the noisy components
of the gradients can lead to displacement components that
correspond to erratic movements on the potential energy sur-
face. Consequently, curvature information that comes from the
subspace spanned by these displacement components must not
be used for the construction of an approximate Hessian. In
contrast to this, the non-noisy gradient components promote
locally systematic net-movements, which do not tend to cancel
each other. In this sense, the displacement components that
correspond to these well defined net-movement span a signif-
icant subspace from which meaningful curvature information
can be extracted and used for building an approximate Hessian.

FIG. 1. Illustrated are significant subspaces spanned by the displacements in
a model atomic coordinate space. Only from the significant subspace, it is
meaningful to extract curvature information. The red solid arrows simulate
displacements made under the influence of noisy forces. The blue dashed
arrows show significant subspaces from which it is meaningful to extract cur-
vature information. Panel (a) shows a case in which the significant subspace
is only one-dimensional. Panel (b) shows an example in which curvature in-
formation can be extracted from the full 2-dimensional space. The significant
subspaces that are shown here were computed using the method outlined in
Sec. II B.

The situation is depicted in Fig. 1 where the red solid
vectors represent the history of normalized displacements and
the blue dashed vectors constitute a basis of the significant
subspace. All the red solid vectors in Fig. 1(a) point into similar
directions. Therefore, curvature information should only be
extracted from a one-dimensional subspace, as, for example,
is given by the blue dashed vector. Displacement components
perpendicular to this blue dashed vector come from the noise in
the gradients. In contrast to Fig. 1(a), Fig 1(b) shows a displace-
ment that points into a considerably different direction than all
the other displacements. For this reason, significant curvature
information can be extracted in the full two-dimensional space.

To define the significant subspace more rigorously, we first
introduce the set of normalized displacements

∆R
i
B
∆Ri

|∆Ri | , (4)

where i = 1, . . ., nhist. With


k |ωk |2= 1, linear combinations w
of the normalized displacements are defined as

wB
nhist
k=1

ωk
∆R

k
. (5)
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Furthermore, we define a real symmetric overlap matrix
S, as

Skl B ∆R
k
·∆R

l
. (6)

It can be seen from

w ·w =ωTSω, (7)

that |w| is made stationary by coefficient vectors ωi that are
eigenvectors of the overlap matrix. In particular, the longest
and shortest vectors that can be generated by linear combina-
tions with normalized coefficient vectorsω correspond to those
eigenvectors of the overlap matrix that have the largest and
smallest eigenvalues. As motivated above, the shortest linear
combinations of the normalized displacements correspond to
noise.

From now on, let the ωi be eigenvectors of (Skl) and let
λi be the corresponding eigenvalues. With

∼
∆R

i
B

1
√
λi

nhist
k=1

ωi
k
∆R

k
, (8)

we finally define the significant subspaceS as

S B span
( ∼

∆R
i �����
λi/max

j

�
λ j
	
> ϵ

)
, (9)

where 0 ≤ ϵ ≤ 1. In all applications presented in this work,
ϵ = 10−4 has proven to work well. Henceforth, we will refer to
the dimension of S as ndim. By construction, it is guaranteed
that ndim ≤ 3N . It should be noted that at each iteration of the
optimization algorithms that are introduced below, the signifi-
cant subspace and its dimension ndim can change. The history
length nhist usually lies between 5 and 20.

Our procedure is analogous to Löwdins canonical orthog-
onalization,17–19 which is used in the electronic structure
community to remove linear dependencies from chemical basis
sets.

C. Obtaining curvature information
on the significant subspace

We define the projection
∼
H of the Hessian H ontoS as

∼
H B PHP

=

i j

Hi j

∼
∆R

i
( ∼
∆R

j
)T
, (10)

where for all
∼
∆R

i
∈S,

PB
ndim
i=1

∼
∆R

i
( ∼
∆R

i
)T

and

Hi jB

( ∼
∆R

i
)T

H
∼
∆R

j
.

Using Eq. (2) and defining

∼
∆gi B

1
√
λi

nhist
k=1

ωi
k

|∆Rk |∆gk, (11)

where i = 1, . . ., ndim, one obtains an approximation for each
matrix element Hi j,

Hi j ≈
∼
∆gi ·

∼
∆R

j
. (12)

In practice, we explicitly symmetrize Hi j in order to avoid
asymmetries introduced by anharmonic effects

Hi j ≈
1
2

(
∼
∆gi ·

∼
∆R

j
+
∼
∆g j ·

∼
∆R

i
)
. (13)

Because the projection P is the identity operator on S,
the curvature c(d) on the potential energy surface along a
normalized d ∈S is given by

c(d) =dT ∼
Hd. (14)

Given the normalized eigenvectors vi and corresponding
eigenvalues κi of the ndim× ndim matrix

�
Hi j

�
, one can write

normalized eigenvectors
∼
v
i
∈S of

∼
H with eigenvalues κi as

∼
v
i
=

ndim
k=1

vi
k

∼
∆R

k
, (15)

where vi
k

is the k-th element of vi. As can be seen from Eq. (14),
the κi give the curvatures of the potential energy surface along
the directions

∼
v
i
.

D. Using curvature information on the significant
subspace for preconditioning ∇E

The gradient ∇E can be decomposed into a component
lying inS and a component lying in its orthogonal complement

∇E =∇ES+∇E⊥, (16)

where ∇ESB P′∇E, ∇E⊥B (I−P′)∇E, and P′B


i

∼
v
i
(∼
v
i
)T

.
In this section, we motivate how the κi can be used to precon-
dition ∇ES. Furthermore, we explain how ∇E⊥ can be scaled
appropriately with the help of a feedback that is based on the
angle between two consecutive gradients.

Let us assume that the Hessian H at the current point of the
potential energy surface is non-singular and let νi and Vi be its
eigenvalues and normalized eigenvectors. In Newton’s method
(Eq. (3)), the gradients are conditioned by the inverse Hessian.
For the significant subspace component ∇ES, it follows

H−1
∇ES =

3N
i=1

ndim
j=1



*.
,

∇E ·
∼
v
j

νi

+/
-

(∼
v
j
·Vi

)
Vi


. (17)

As outlined in Sec. II C, we know the curvature κ j along
∼
v
j
. Therefore, at a first thought, Eq. (17) suggests to simply

replace νi by κ j, where i = 1, . . ., 3N and j = 1, . . ., ndim. Indeed,
if the optimization was restricted to the subspaceS, this choice
would be appropriate. However, with respect to the complete
domain of the potential energy surface, one is at risk to under-
estimate the curvature νi if the overlap Oi j B

∼
v
j
·Vi is non-

vanishing.
In particular, if Oi j is far from being negligible, under-

estimating the curvature νi can be particularly problematic
because coordinate changes in the direction of Vi might be
too large. This can render convergence difficult to obtain in
practice.
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We therefore replace νi in Eq. (17) by

κ′jB

κ2
j+r2

j , (18)

where r j is chosen in analogy to the residue of Weinstein’s
criterion20,21 as

r j B
����H
∼
v
j
−

(
(∼v j)TH

∼
v
j
) ∼

v
j����. (19)

Using Eqs. (11), (14), and (15), this residue can be approx-
imated by

r j ≈
������

ndim
k=1


vi
k

∼
∆gk


− κ j

∼
v
j
������
. (20)

With this choice for κ′j, the preconditioned gradient ∇EP
S

is finally given by

∇EP
S B

ndim
j=1

*.
,

∇E ·
∼
v
j

κ′j

+/
-

∼
v
j
. (21)

Clearly, the residue r j can only alleviate the problem of
curvature underestimation, but it does not rigorously guarantee
that every single νi is estimated appropriately. However, in
practice, this choice works very well. The reason for this can
be seen from Fig. 2. In Fig. 2(a), a histogram of the quality
and safety measure qi j B


κ2
j+r2

j − νi is shown. If qi j < 0,
the curvature νi is underestimated; if qi j ≈ 0, the curvature
νi is well estimated; and finally, if qi j > 0, the curvature is
overestimated. Overestimation leads to too small step sizes
and, therefore, to a more stable algorithm, albeit at the cost of
a performance loss. Critical underestimation of the curvature
(qi j≪ 0) is rare. Fig. 2(b) shows the averages of the overlap

Oi j in the corresponding bins. If
∼
v
j

has on average a large
overlap with Vi, the curvature along Vi is estimated accurately
(histogram in Fig. 2(a) peaks at qi j ≈ 0).

FIG. 2. Panel (a) is a histogram of qi j B

κ2
j + r

2
j − νi for i = 1, . . . , 3N

and j = 1, . . . , ndim. qi j is a measure for the quality of the estimation of the
eigenvalue νi of the exact Hessian. Panel (b) shows the bin-averaged overlap
Oi j. The frequency of severe curvature underestimation drops quickly in the
region qi j < 0. The histogram in panel (a) peaks in the region of good
estimation (qi j ≈ 0) which coincidences with the region of large overlap Oi j,
shown in panel (b). The data for this figure come from 100 minimizations of
a Si20 system described by the Lenosky-Silicon22,23 force field.

What remains to be discussed is how the gradient compo-
nent ∇E⊥ should be scaled. By construction, ∇E⊥ lies in the
subspace for which no curvature information is available. We
therefore treat this gradient component by a simple steep-
est descent approach that adjusts the step size α > 0 at each
iteration. For the minimizer that is outlined in Sec. II F, the
adjustment is based on the angle between the complete gradient
∇E and the preconditioned gradient ∇EP. If the cosine of this
intermediate angle is larger than 0.2, α is increased by a factor
of 1.1, otherwise α is decreased by a factor of 0.85. For the
saddle search algorithm, the feedback is slightly different and
will be explained in Sec. II G. The exact numbers for the
scaling factors were determined heuristically. The only con-
straints are that the scaling factors must increase the step size
if the complete gradient and the preconditioned gradient point
into similar directions and decrease the step size otherwise.
According to our experience, the above choices offer a good
efficiency.

In conclusion, the total preconditioned gradient ∇EP is
given by

∇EPB∇EP
S+α∇E⊥. (22)

In Sec. II E, we explain how this preconditioned gradient
can be further improved for biomolecules.

The preconditioned subspace gradient ∇EP
S

was obtained
under the assumption of a quadratic potential energy surface.
However, if the gradients at the current iteration are large, this
assumption is probably not satisfied. Displacing along ∇EP

S
in

these cases can reduce the stability of the optimization. Hence,
if the |∇E | exceeds a certain threshold, it can be useful to set the
dimension ofS to zero for a certain number of iterations. This
means that∇E⊥=∇E and, therefore,∇EP= α∇E. In that case,
α is also adjusted according to the above described gradient
feedback. As this fallback to steepest descent is intended as a
last final fallback, it should have the ability to deal with arbi-
trarily large forces. Therefore, we also check that α∇E does
not displace any atom by more than a user-defined trust radius.
However, to our experience, this fallback is not necessary in
most cases. Indeed, all the benchmarks presented in Secs. III
were performed without this fallback.

E. Additional efficiency for biomolecules

Many large molecules like biomolecules or polymers are
floppy systems in which the largest and smallest curvatures can
be very different from each other. Steepest descent optimizers
are very inefficient for these ill-conditioned systems, because
the high curvature directions force to use step sizes that are
far too small for an efficient optimization in the directions of
small curvatures. Put more formally, the optimization is ineffi-
cient for those systems, because the condition number, which
is the fraction of largest and smallest curvature, is large.24

For biomolecules, the high-curvature directions usually corre-
spond to bond stretchings, that is, movements along inter-
atomic displacement vectors of bonded atoms. For the current
purpose, we regard two atoms to be bonded if their inter-atomic
distance is smaller than or equal to 1.2 times the sum of their
covalent radii. For i = 1, . . ., N , let ri ∈ R3 be the coordinate
vector of the i-th atom. For a system with nbond bonds, we define
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for each bond a bond vector bm ∈R3N , m= 1, . . ., nbond,

bm B

*.........
,

∼
b
m,1

∼
b
m,2

...
∼
b
m,N

+/////////
-

, (23)

where the
∼
b
m,k

∈R3, k = 1, . . ., N , are defined as

∼
b
m, i

B−
∼
b
m, j

B




r j−ri, if atoms i and j are
bonded by the m-th bond,

0, otherwise.
(24)

The bm are sparse vectors with six non-zero elements.
We separate the total gradient ∇E into its bond-stretching

components ∇Estr and all the remaining components ∇Er,

∇E =∇Estr+∇Er. (25)

Let cm ∈ R be coefficients that allow the bond-stretching
components to be expanded in terms of the bond vectors

∇EstrB

nbond
m=1

cmbm. (26)

Using definition Eq. (26), left-multiplying Eq. (25) with a
bond vector bn and requiring the ∇Er to be orthogonal to all
the bond vectors, one obtains the following linear system of
equations, which determines the coefficients cm and, with it,
the bond stretching gradient defined in Eq. (26):

bn ·∇E =

m

cmbn ·bm. (27)

For the optimization of a biomolecule, the bond-stretching
components are minimized in a simple steepest descent fashion.
The atoms are displaced by −αs∇Estr. The bond-stretching
step size αs is a positive number, which is adjusted in each
iteration of the optimization by simply counting the number
of projections bm ·∇E that have not changed signs since the
last iteration. If more than two thirds of the signs of the
projections have remained unchanged, the bond-stretching
step size αs is increased by 10%. Otherwise, αs is decreased
by a factor of 1/1.1. The non-bond-stretching gradients ∇Er
are preconditioned using the stabilized quasi-Newton approach
presented in Secs. II B—II D. It is important to note that in
Secs. II B—II D, all∇E have to be replaced by∇Er when using
this biomolecule preconditioner. In particular, this is also true
for the gradient feedbacks that are described in Secs. II D and
II G.

F. Finding minima—The SQNM method

The pseudocode below demonstrates how the above pre-
sented techniques can be assembled into an efficient and stabi-
lized quasi-newton minimizer (SQNM). The pseudo code con-
tains 4 parameters explicitly. αstart and αs,start are initial step
sizes that scale∇E⊥ and∇Estr, respectively. m is the maximum
length of the history list from which the significant subspace
S is constructed. Ethresh is an energy-threshold that is used to
determine whether a minimization step is accepted or not. It

should be adapted to the noise level of the energies and forces.
The history list is discarded if the energy increases, because
an increase in energy is an indication for inaccurate curvature
information. In this case, the dimension of the significant sub-
space is considered to be zero. Furthermore, line 17 implicitly
contains the parameter ϵ , which is described in Sec. II B. The
optimization is considered to be converged if the norm of the
gradient is smaller than a certain threshold value. Of course,
other force criteria like, for example, using the maximum
force component instead of the force norm, are possible.

1. α← αstart; αs← αs,start;
2. accepted← true;
3. k ← 1;
4. Initialize Rk with coordinates;
5. Ek← E(Rk);
6. repeat
7. if optimizing biomolecule then

8. if accepted then

9. Compute ∇Estr for Rk , as outlined in Sec. II E;
10. Adjust αs based on the feedback described in Sec. II E;
11. gk← ∇E(Rk)−∇Estr;
12. Rk← Rk−αs∇Estr;
13. end if

14. else

15. gk← ∇E(Rk);
16. end if

17. Based on the {g j,R j} j≤k in the history list, compute the
preconditioned gradient ∇EP as outlined in Secs. II B—II E;

18. Rk+1← Rk−∇EP;
19. if E(Rk+1) > Ek+Ethresh and α > αstart/10 then

20. accepted ← false;
21. Remove {g j,R j} j<k from the history list;
22. α← α/2;
23. else

24. accepted ← true;
25. Ek+1← E(Rk+1);
26. Adjust α based on the gradient feedback described in

Sec. II D;
27. if k >m then

28. Remove Rk−m and gk−m from storage;
29. end if

30. k ← k +1;
31. end if

32. until convergence.

G. Finding saddle points—The SQNS method

In this section, we describe a stabilized quasi-Newton sad-
dle finding method (SQNS) that is based on the same principles
as the minimizer in Sec. II F. SQNS belongs to the class of the
minimum mode following methods.15,25,26

For simplicity, we will denote the Hessian eigenvector
corresponding to the smallest eigenvalue as minimum mode.
Broadly speaking, a minimum mode following method maxi-
mizes along the direction of the minimum mode and it mini-
mizes in all other directions. The optimization is considered
to be converged if the curvature along the minimum mode
is negative and if the norm of the gradient is smaller than a
certain threshold. As for the minimization, other force criteria
are possible.
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The minimum mode of the Hessian can be found by mini-
mizing the curvature function c :R3N → R,

c(d) = dTHd
dTd

≈ ∆g ·∆R
h2 , (28)

where along with h≪ 1, the following definitions were used:
∆RB h d

|d| and ∆gB∇E(R+∆R)−∇E(R). The vector R is
the position at which the Hessian H is evaluated at. For the
minimization of c(d), we use the algorithm described in Sec. II
F where the energy as objective function is replaced by c(d). In
the pseudocode below, the here discussed minimization is done
at line 6. Under the constraint of normalization, the gradient
∇c(d)| |d|=1 is given by

∇c(d)| |d|=1 = 2(Hd−c(d)d)
≈ 2

(
∆g
h
−

(
∆g ·∆R

h3

)
∆R

)
. (29)

Blindly using the biomolecule preconditioner of Sec. II E
for the minimization of c(d) would mean that the gradient of
Eq. (29) was projected on the bond vectors of d. Obviously,
the bond vector as defined in Sec. II E has no meaning for d.
Therefore, Eq. (29) instead is projected onto the bond vectors
of R+∆R.

At a stationary point, systems with free boundary condi-
tions have six vanishing eigenvalues. The respective eigenvec-
tors correspond to overall translations and rotations.1 Instead
of directly using Eq. (29) for the minimization of the curvature
of those systems, it is advantageous to remove the translations
and rotations from ∆R and ∇c(d)| |d|=1 in Eq. (29).1,27,28

The convergence criterion for the minimization of c(d)
has a large influence on the total number of energy and force
evaluations needed to obtain convergence. It therefore must be
chosen carefully.

The minimum mode is usually not computed at every
iteration, but only if one of the following conditions is fulfilled:

1. at the first iteration of the optimization,
2. if the integrated length of the optimization path connecting

the current point in coordinate space and the point at which
the minimum mode has been calculated previously exceeds
a given threshold value rrecomp,

3. if the curvature along the minimum mode is positive, and
the curvature has not been recomputed for at least nrecomp
iterations,

4. if the curvature along the minimum mode is positive and the
norm of the gradient falls below the convergence criterion,

5. at convergence (optional).

In the pseudocode, these conditions are checked in line 5.
Among these conditions, condition no. 2 is, with respect to the
performance, the most important one. The number of energy
and gradient evaluations needed for converging to a saddle
point can be strongly reduced if a good value for rrecomp is
chosen. Conditions 3 and 4 can be omitted for most cases.
However, for some cases, they can offer a slight reduction in
the number of energy and gradient evaluations. For example,
for the alanine dipeptide system used in Sec. III, these two

conditions offered a performance gain of almost 10%. Al-
though possible, we usually do not tune nrecomp, but typically
use nrecomp= 10. In our implementation, condition 5 is optional.
It can be used if very accurate directions of the minimum mode
at the saddle point are needed. In this case, this last minimum
mode computation can also be done at a tighter convergence
criterion. Additional energy and gradient computations are
saved in our implementation by using the previously computed
minimum mode as the starting mode for a new curvature mini-
mization.

As stated above, a saddle point is found by maximizing
along the minimum mode and minimizing in all other direc-
tions. This is done by inverting the preconditioned gradient
component that is parallel to the minimum mode. This is
shown at line 19 of the pseudocode below. For the case of
biomolecules, the component of the bond-stretching gradient
that is parallel to the minimum mode is also inverted (line
13). As already mentioned in Sec. II D, the feedback that
adjusts the stepsize of ∇E⊥ is slightly different in case of the
saddle finding method. Let dmin be the normalized direction
of the minimum mode. Then, in contrast to minimizations,
the stepsize that is used to scale ∇E⊥ is not based on the
angle between the complete ∇E and ∇EP but only on the an-
gle between∇E−

(
∇E ·dmin

)dmin and∇EP−
(
∇EP ·dmin

)dmin.
These are the components that are responsible for the minimi-
zation in directions that are not the minimum mode direction.
Otherwise, the gradient feedback is absolutely identical to that
described in Sec. II D.

A saddle point can be higher in energy than the config-
uration at which the optimization is started at. Therefore, in
contrast to a minimization, it is not reasonable to discard the
history, if the energy increases. As a replacement for this
safeguard, we restore to a simple trust radius approach in
which any atom must not be moved by more than a predefined
trust radius rtrust. A displacement exceeding this trust radius
is simply rescaled. If the curvature is positive and the norm
of the gradient is below the convergence criterion, we also
rescale displacements that do not come from bond-stretchings.
The displacement is rescaled such that the displacement of the
atom that moved furthest is finally given by rtrust. This avoids
arbitrarily small steps close to minima.

On very rare occasions, we could observe for some cluster
systems that over the course of several iterations, a few atoms
sometimes detach from the main cluster. To avoid this prob-
lem, we identify the main fragment and move all neighboring
fragments towards the nearest atom of the main fragment.

Below, the pseudocode for SQNS is given. It contains
3 parameters explicitly. α′start and α′s,start are initial step sizes
that scale ∇E⊥ and ∇Estr, respectively. m′ is the maximum
length of the history list from which the significant subspace
is constructed.

The path-length threshold rthresh that determines the re-
computation frequency of the minimum mode is implicitly
contained in line 5. Lines 14 and 21 imply the trust radius
rtrust.

Besides all the parameters that are needed for the mini-
mizer of Sec. II F, line 6 additionally implies the finite differ-
ence step size h that is used to compute the curvature and its
gradient.
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Line 18 implicitly contains the parameter ϵ , which is
described in Sec. II B.

1. α′← α′start; α
′
s← α′s,start;

2. l ← 1;
3. Initialize Rl with coordinates;
4. repeat
5. if recompute minimum mode then

6. Use algorithm of Sec. II F and obtain a normalized minimum
dmin of c(d) at Rl , use the previously computed minimum
mode as input;

7. end if

8. if optimizing biomolecule then

9. Compute ∇Estr for Rl, as outlined in Sec. II E;
10. Adjust α′s based on the feedback described in Sec. II E;
11. s← α′s∇Estr;
12. gl← ∇E(Rl)−∇Estr;
13. Rl← Rl−s+2

(
s ·dmin

)dmin;
14. Check for trust radius condition as described in Sec. II G.

Rescale, if needed;
15. else

16. gl← ∇E(Rl);
17. end if

18. Based on the {g j,R j} j≤l in the history list, compute the
preconditioned gradient ∇EP as outlined in Secs. II B—II E;

19. Rl+1← Rl−∇EP+2
(
∇EP ·dmin

)dmin;
20. Check for trust radius condition and for fragmentation as

described in Sec. II G. Rescale and fix fragmentation,
if needed;

21. Adjust α′ based on the gradient feedback described in Sec. II G;
22. if l >m′ then

23. Remove Rl−m′ and gl−m′ from the history list;
24. end if

25. l ← l +1;
26. until convergence.

III. BENCHMARKS AND COMPARISONS

A. Minimizers

We compare the performance of the new SQNM method
to the FIRE and L-BFGS minimizers. We did not include the
CG method in this benchmark, because FIRE has previously
been shown to be significantly more efficient than CG.12 Both
FIRE and L-BFGS belong to the best optimizers in their class.
With regard to the required number of energy and force evalu-
ation, L-BFGS is one of the best minimizers available for the
optimization of atomic systems. With respect to noise toler-
ance, the same is true for FIRE. Although more efficient than
FIRE, L-BFGS tends to fail if there are inconsistent forces and
energies due to computational noise.12 Such inconsistencies
are unavoidable in electronic structure calculations like, for
example, DFT.

For Si20 clusters and the alanine dipeptide biomolecule,
benchmarks were performed both at DFT and force field level.
For L-BFGS, we used the reference implementation of No-
cedal10,11 which is available from his website. We are not aware
of any reference implementation of FIRE. However, FIRE is
straightforward to implement, and thus, we used our own code.
For the benchmarks of the minimizers at DFT level, all codes
were coupled to the BigDFT electronic structure code.29,30 For
the benchmarks at force field level, we used the Assisted Model

Building with Energy Refinement (AMBER) force field in the
ff99SB variant as implemented in AMBER Tools31 and the
Lenosky Silicon force field.22,23

For alanine dipeptide and Si20, we generated test sets by
running MD simulations at force field level. At force field
level, each test set contains 1000 structures that were taken
from the MD trajectories. Subsets containing 100 of these force
field structures were used as benchmark systems at DFT level.
For each method, we tuned the parameters at force field level
for a subset of 100 configurations. Identical parameters were
used both at force field and DFT level. The Si20 system was
considered to be converged as soon as the norm of the force
fell below 1.0× 10−4 hartree/bohr. Even if far away from a
stationary point, relatively small forces can arise in alanine
dipeptide. Therefore, a much tighter convergence criterion of
1.0×10−5 hartree/bohr had to be chosen for alanine dipeptide.

Table I gives the results of these benchmarks. In addition
to the average number of energy and force calls ⟨nef⟩, we also
give the average integrated path length of the optimization path
⟨r⟩. ⟨r⟩ is computed by summing all the distances between
structures for which consecutive energy and force evaluations
were performed.

There is no guarantee that minimizations that are started at
the same configuration will converge to the identical minimum.
Therefore, Table I gives averages for both, the subset of runs
that all converged to identical minima and averages over all
runs, regardless of whether the final minima were identical
or not. Identical configurations were identified by using the
recently developed s-overlap fingerprints.32

In all benchmarks, FIRE is clearly inferior to L-BFGS
and SQNM. With respect to the average number of energy and
force evaluations, the L-BFGS method is slightly more effi-
cient than the new SQNM minimizer. However, ⟨r⟩ of L-BFGS
is 1.6—2.6 times larger than the corresponding values of the
SQNM method. On average, this means that L-BFGS displaces
the atoms more violently than SQNM. In DFT calculations,
the wavefunction of the previous optimization step can be
used as input wave function for the current iteration. Roughly
speaking, the less the positions of the atoms have changed, the
better this input guess usually is. Therefore, less wavefunction
optimizations are needed for convergence. To quantify this, the
average number of wavefunction optimization iterations ⟨nwoi⟩
needed for a minimization of the potential energy surface is
given in Table I. As a consequence of the smaller displacements
in the SQNM method, the L-BFGS and the SQNM methods
roughly need the same number of wavefunction optimizations
for converging to a minimum of the potential energy surface.

The L-BFGS minimizer needed less energy and force
evaluations at force field level than at DFT level. We verified
that this is not due to the noise at DFT level, but a consequence
of the different natures of both potential energy surfaces. The
force field potential energy surface is not a noiseless variant
of the DFT potential energy surface but a rather inaccurate
approximation to it. In particular, this means that the frequen-
cies of the force field are different from the frequencies of the
DFT energy surface, and therefore, the same is true for the
condition numbers. Therefore, one cannot expect to obtain the
same number of energy and force evaluations at force field and
DFT level.
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TABLE I. Benchmark results for minimizers. DFT test sets contain 100, force field test sets contain 1000 distinct structures. SQNM runs labeled with “(Bio)”
indicate the usage of the preconditioner for biomolecules described in Sec. II E.

To same minimum To arbitrary minimum

System Level of theory Method nf
a N b ⟨nef⟩c ⟨r ⟩d ⟨nwoi⟩e N b ⟨nef⟩c ⟨r ⟩d ⟨nwoi⟩e

Alanine dipeptide DFT FIRE 0 93 454 14.01 7602 100 458 14.14 7662
L-BFGS 2 93 185 23.41 3876 98 188 24.02 3941

SQNM (Bio) 0 93 198 14.10 3711 100 207 14.29 3858

Force field FIRE 0 954 414 12.21 — 1000 418 12.35 —
L-BFGS 1 954 156 19.69 — 999 158 20.39 —

SQNM (Bio) 0 954 188 12.38 — 1000 192 12.57 —
SQNM 0 954 356 12.27 — 1000 363 12.49 —

Si20 DFT FIRE 0 46 139 18.83 2458 100 143 19.52 2513
L-BFGS 30 46 73 27.19 1677 70 74 31.26 1714
SQNM 0 46 83 16.00 1740 100 86 16.50 1784

Force field FIRE 0 486 147 13.26 — 1000 163 15.32 —
L-BFGS 0 486 57 25.49 — 1000 65 30.44 —
SQNM 0 486 72 10.82 — 1000 81 11.93 —

aNumber of failed optimizations.
bNumber of runs over which the averages are taken.
cAverage number of energy and force calls (only successful runs).
dAverage integrated path length of the optimization trajectory in units of bohr.
eAverage number of wavefunction optimization iterations.

The L-BFGS minimizer proved to be unreliable at DFT
level. For example, 30% of all Si20 minimizations failed to
converge. In contrast to this, all SQNM runs successfully
converged to a minimum. The failure to converge in the L-
BFGS method is generally due to failures of the line minimiza-
tions in the final part of the optimization where a large fraction
of the forces consists of noise.

B. Saddle finding methods

The SQNS method was compared to an improved version
of the dimer method15 as described in Ref. 16 and as imple-
mented in the EON code.33 In this improved version, the L-
BFGS10,11,16 algorithm is used for the rotations and translation

of the dimer. Furthermore, the rotational force and the dimer
energy are evaluated by means of a first order forward finite
difference of the gradients.16,34,35 The same force fields as for
the minimization benchmarks were used. For the DFT calcula-
tions, SQNS was coupled to the BigDFT code. The EON codes
offer an interface to the Vienna Ab-initio Simulation Package
(VASP),36–40 which consequently was used.

The same test sets as for the minimizer benchmarks were
used. In particular, this means that the starting configurations
are not close to a saddle point, and therefore, these test sets
are comparatively difficult for saddle finding methods. Again,
parameters were only tuned for a subset of 100 configurations
at force field level. With exception to the finite difference step
size that is needed to calculate the curvature and its gradient, we

TABLE II. Benchmark results for saddle finding methods. DFT test sets contain 100, force field test sets contain 1000 distinct structures. SQNS runs labeled
with “(Bio)” indicate the usage of the preconditioner for biomolecules described in Sec. II E.

To same saddlepoint To arbitrary saddlepoint

System Level of theory Method nf
a N b ⟨nef⟩c N b ⟨nef⟩c

Alanine dipeptide DFT SQNS (Bio) 0 — — 100 510

Force field DIMER 0 87 1324 1000 3146
SQNS (Bio) 0 87 309 1000 415

SQNS 0 87 632 1000 757

Si20 DFT DIMER 0 8 234 100 444
SQNS 0 8 140 100 237

Force field DIMER 0 20 264 1000 622
SQNS 0 20 189 1000 368

aNumber of failed optimizations.
bNumber of runs over which the averages are taken.
cAverage number of energy and force calls (only successful runs).
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used the same parameters at force field and DFT level. Because
of noise, the finite difference step size must be chosen larger
at DFT level. The same force norm convergence criteria as for
the minimization benchmarks were used. In all SQNS optimi-
zations, the minimum mode was recalculated at convergence
(condition 5 of Sec. II G).

The test results are given in Table II. In contrast to the
minimization benchmarks, we do not give averages for the
number of wavefunction optimization iterations, because the
two saddle finding methods were coupled to two different elec-
tronic structure codes. Therefore, the number of wavefunction
optimizations is not comparable.

In particular, in case of the Si20 system, both methods
converged only seldom to the same saddle points, and there-
fore, the statistical significance of the corresponding numbers
given in Table II is limited. However, averages over large sets
could be made in the case of convergence to an arbitrary saddle
point.

In the cases we considered, the dimer method needed be-
tween 1.4 and 7.6 times more energy and force evaluations than
the new SQNS method. In particular, for alanine dipeptide, the
SQNS approach was far superior to the dimer method. Due to
its inefficiency, it was impossible to obtain a significant number
of saddle points for alanine dipeptide at DFT level when using
the dimer method. For this reason, only benchmark results
for the SQNS method are given for alanine dipeptide at DFT
level.

IV. CONCLUSION

Optimizations of atomic structures belong to the most
important routine tasks in fields like computational physics,
chemistry, or biology. Although the energies and forces given
by computationally demanding methods like DFT are physi-
cally accurate, they are contaminated by noise. This compu-
tational noise comes from underlying integration grids and
from self-consistency cycles that are stopped at non-vanishing
thresholds. The availability of optimization methods that are
not only efficient but also noise-tolerant is therefore of great
importance. In this contribution, we have presented a tech-
nique to extract significant curvature information from noisy
potential energy surfaces. We have used this technique to create
a SQNM and a SQNS algorithm. SQNM and SQNS were
demonstrated to be superior to existing efficient and well es-
tablished methods.

Until now, the SQNM and the SQNS optimizers have been
used over a period of several months within our group. During
this time, they have performed thousands of optimizations
without failure at the DFT level. Because of their robustness
with respect to computational noise and due to their efficiency,
they have replaced the default optimizers that have previ-
ously been used in Minima Hopping41,42 and Minima Hopping
Guided Path Search43 runs.

Implementations of the minimizer and the saddle search
method are made available via the BigDFT electronic struc-
ture package. The code is distributed under the GNU General
Public License and can be downloaded free of charge from the
BigDFT website.44
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